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Abstract

Quantum fluids of light reproduce the hydrodynamics of ultracold Bose–Einstein condensates in an optical setting.
In this internship, I contributed to a two-colour 85Rb vapour experiment, realigning the dual-laser optics and
automating off-axis interferometric imaging to probe self- and cross-Kerr nonlinearities. The upgraded setup
yielded a self-Kerr index |𝑛2𝐼 | ≈ 10−5 and a full map of the cross-Kerr index |𝑛12𝐼 | ≈ 10−6, revealing frequency
windows where inter-component interactions switch signs.
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1 Introduction

The internship took place at the Laboratoire Kastler Brossel over the course of over a month, from the
22nd of April to the 13th of June, within the Quantum Fluids of Light research team. In a broad sense, the
team studies the quantum fluid effects of light. Normally, light does not have mass, and cannot interact
with itself, meaning it is impossible to observe fluid-like effects since they require inter-component
interactions.

However, curiously, it is possible to engineer a two-dimensional fluid of light in a nonlinear medium. The
medium gives photons an effective mass, and acts as a mediator of photon-photon interactions.

This approach gives a unique perspective into the study of quantum fluids; using the toolkits and
techniques of optics to our advantage, one can probe into the physics of quantum hydrodynamic systems
(BEC, superfluidity) while circumnavigating the difficulties of experimentally realising quantum fluids
through ultracold atomic gases.

Initially, I spent a week reading up on the literature of this exciting domain to get up to speed with the
quantum fluids of light community. Of much help was the team’s recently published review on paraxial
fluids of light1. It gives a comprehensive overview of the team’s work, as well as other research groups.
Another great resource was T. Aladjidi’s thesis, Full optical control of quantum fluids of light in hot
atomic vapors2.

After discussing with the internship’s supervisor, Quentin Glorieux, it was decided that I would be focusing
on the cross-Kerr nonlinearity effect. In a binary light mixture, both fluids of light interact with each
other, altering their refractive index and overall Kerr nonlinearity through intra-component interactions.
Understanding this effect is crucial in binary fluids of light settings, where the Kerr nonlinearity of each
respective fluid determines the miscibility regime of the mixture. Binary mixtures of light have already
been realised within the research team, mainly by Clara Piekarski, however, many questions regarding
the miscibility regimes and coarsening dynamics remain3 4.

Although the experimental setup used for the nonlinearity measurements was already set up, it was far
from finished. Much of the internship was spent on modifying the experimental setup by adding optical
elements (convergent lenses for 4f-systems, neutral density filters, etc.), removing certain elements that
were deemed unnecessary, working on the alignment of the optical paths, and choosing an ideal rubidium
vapour cell. This was done with the aid of PhD student Simon Lepleux, who was of great help throughout
the internship.

A significant amount of time was also dedicated towards the development of a Python script to interface
one of the cameras with both lasers and a computer. The use for this was twofold; first, it significantly
eased the optical alignment of the light beams since it allowed to not only obtain live images from the
camera, but also image the Fourier plane in real time. Second, it allowed to perform the necessary data
treatment to obtain the phase of the fluid beam over many image frames within a short window of time.

2 Theoretical description

2.1 Nonlinear optics

Optical phenomena are considered nonlinear when the response of a medium to an applied electric field
is dependent on higher order powers of the electric field. In order to describe this nonlinearity, it is
necessary to delve into the polarisation P(𝑡) of a medium, which is none other than the dipole moment
per unit of volume.

In «standard» linear optics, the polarisation of a dielectric medium induced by an incident electric field
follows a simple linear relationship; P(𝑡) = 𝜀0𝜒

(1)E(𝑡), where 𝜒 (1) is the so-called linear susceptibility
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4 Paraxial fluids of light

and 𝜀0 is the vacuum permittivity.

On the other hand, in nonlinear optics, the polarisation is expanded into a series of increasing orders of
power of the applied electric field,

P = 𝜀0 [ 𝜒̂ (1) .E + 𝜒̂ (2) : EE + 𝜒̂ (3) ...EEE + . . . ] . (1)

In all generality, 𝜒̂ (𝑛) is the n-th order susceptibility, and a tensor of rank 𝑛 + 1. The dot notation in the
above equation denotes tensor products.

Keeping track of all tensor elements of susceptibility can quickly become cumbersome. Already at the
third order of susceptibility, one must take into account 81 elements. Thankfully, a few considerations in
the symmetry of a system can alleviate this problem.

Indeed, in a medium with central symmetry such as a vapour, all susceptibilities of even order vanish5.
One can see this explicitly with the second order susceptibility. Consider for example the following
polarisation, containing only second order dependence, P(𝑡) = 𝜀0𝜒

(2)E2(𝑡). Changing the sign of
the electric field, the sign of the polarisation must also change, since by assumption the medium is
centrosymmetric (in other words it possesses an inversion symmetry). The previous expression thus
becomes −P(𝑡) = 𝜀0𝜒

(2) [−E(𝑡)]2 = 𝜀0𝜒
(2)E(𝑡)2. Since P(𝑡) = −P(𝑡), it follows that P(𝑡) = 0 and

thus 𝜒 (2) = 0.

Furthermore, assuming an isotropic and linearly polarised electric field, which is indeed valid in our case,
all susceptibilities simplify into scalar values. Taking into account only values up to the third order, we
obtain the following simplified expression for the polarisation of the medium:

𝑃(𝑡) = 𝜀0𝜒
(1)𝐸 (𝑡) + 𝜀0𝜒

(3)𝐸3(𝑡). (2)

The incident electric field is assumed to be monochromatic; 𝐸 (𝑡) = 1
2𝐸0𝑒

𝑖𝜔𝑡+c.c.. Cubing this expression
gives us 𝐸3(𝑡) = 1

8

(
3𝐸0 |𝐸0 |2𝑒−i𝜔𝑡 + 𝐸3

0𝑒
−3i𝜔𝑡 + c.c.

)
. Putting these two expressions of the electric field

into equation 2, one obtains the following induced polarisation:

𝑃(𝑡) = 𝑃0
2
𝑒−i𝜔𝑡 + 𝑃1

2
𝑒−3i𝜔𝑡 + c.c. (3)

with 𝑃0 = 𝜀0𝜒
(1) (𝜔)𝐸0 + 3

4𝜀0𝜒
(3) (𝜔) |𝐸0 |2𝐸0, and 𝑃1 = 1

4𝜀0𝜒
(3) (3𝜔)𝐸3

0 . The value in the parenthesis
of each susceptibility denotes the frequency at which the respective term oscillates.

The contribution of the term 𝑃1 being negligible near resonance, equation 3 is further simplified into

𝑃(𝑡) = 𝜀0

(
1
2
𝜒 (1) (𝜔) + 3

8
𝜒 (3) (𝜔) |𝐸0 |2

)
𝐸0𝑒

−i𝜔𝑡 + c.c.. (4)

The total susceptibility can then be defined as 𝜒 = 𝜒 (1) + 3
4 𝜒

(3) |𝐸0 |2. This expression allow us to finally
proceed with deriving the refractive index expression. Skipping over a few tedious but simple steps, one
arrives at the following equation for the refractive index:

𝑛(r) = 𝑛0 + 𝛿𝑛0(r) + 𝑛2𝐼, (5)

where 𝑛0 is the ordinary linear refractive index, 𝛿𝑛0(r) describes local variations, and 𝑛2𝐼 is the nonlinear
contribution to the refractive index, proportional to the intensity of the light.

This equation is paramount for the rest of this paper. The nonlinear refractive index 𝑛2 =
3𝜒 (3)

4𝜀0𝑛
2
0𝑐

, which
is directly proportional to the third-order susceptibility, is also known as self-Kerr nonlinearity, and is at
the basis of the nonlinear optical behaviour that we see manifested within the medium.
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self  focusing

self  defocusing

Figure 1: Depiction of the analogy between convergent and divergent lenses in the case of a light beam
with a gaussian intensity profile traversing a nonlinear medium.2

The most crucial property that arises from self-Kerr nonlinearity is the so-called self-focusing and self-
defocusing regimes. Imagine a light beam with a gaussian intensity profile. For a positive 𝑛2, the centre of
the light beam will experience a higher refractive index compared to its outskirts, similarly to a convergent
lens, and thus self-focus. For a negative 𝑛2, this will lead to self-defocusing, analogously to a divergent
lens. This principle is qualitatively demonstrated in figure 1.

In a binary fluid of light mixture, interactions between both fluids give rise to another effect, the so-
called cross-Kerr nonlinearity. This added effect contributes to the total refractive index, altering the
self-(de)focusing regime. The cross-Kerr nonlinear index is denoted as 𝑛12.

2.2 Nonlinear Schrödinger and Gross-Pitaevskii equations (NLSE & GPE)

The NLSE describes the evolution of the electric field envelope as it propagates through a nonlinear
medium. The full derivation of the NLSE will not be detailed here, but a few crucial assumptions for its
validity are outlined.

The NLSE is derived from the following Maxwell’s equation describing the propagation of an electric
field through a nonlinear material,6

∇2E − 1
𝑐2

𝜕2E
𝜕𝑡2

=
1

𝜀0𝑐2
𝜕2P
𝜕𝑡2

. (6)

An important assumption is that the envelopeE of the electric field 𝐸 = E𝑒𝑖𝑘0𝑧 varies slowly comparatively
to the wavenumber 𝑘0. This assumption naturally leads to the paraxial approximation.

Eventually, the 2D+1 NLSE is obtained:

i
𝜕E
𝜕𝑧

= − 1
2𝑘0

∇2
⊥E − i

𝛼

2
E − 𝑘0

𝛿𝑛0(r)
𝑛0

E − 𝑘0
𝑛2𝐼

𝑛0
E, (7)

where 𝑧 is the axis of propagation, and ⊥ denotes the transverse plane (𝑥, 𝑦).

The whole principle of quantum fluids of light relies on the fact that the NLSE is mathematically analogous
to the Gross-Pitaevskii equation, describing the temporal evolution of the macroscopic wavefunction 𝜓

of a dilute Bose gas,

iℏ
𝜕𝜓

𝜕𝑡
=

(
− ℏ2

2𝑚
∇2 − i

𝛾

2
+𝑉 (r) + 𝑔 |𝜓 |2

)
𝜓. (8)

One can quite easily see the similarities of these two equations. The first term corresponds to the kinetic
energy. The second term describes linear loss. The third term is the potential energy, which in the NLSE
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6 Paraxial fluids of light

Figure 2: Three dimensional diagram of a fluid beam in the self-defocusing regime. As it passes through
the vapour cell, the fluid gradually increases in size. The dynamics of the fluid are governed by the
self-Kerr interaction 𝑛2 |E(r) |2, kinetic energy or diffraction − 1

2𝑘∇
2
⊥E, as well as a potential 𝛿𝑛(r, 𝑧).2

case can be engineered by locally modifying the linear refractive index. Finally, the last term corresponds
to a nonlinear self-interaction energy.

An important difference between the two equations, besides the differing dimensions of their quantities,
is the fact that while the GPE defines a temporal evolution, the NLSE is describing the evolution along
a propagating spatial axis. In essence, the spatial axis 𝑧 is an effective time dimension, while the spatial
dynamics of the fluid of light happen within the transverse plane (𝑥, 𝑦). A nonlinear material of length
𝐿 will thus have an effective time evolution of 𝐿/𝑐.

2.3 Hot atomic vapours

Much of the theoretical framework regarding fluids of light has been laid out in the previous sections. A
key consideration that remains is the choice of nonlinear medium.

While there exists a variety of possible nonlinear media that could be used for the experimental realisation
of fluids of light, such as photorefractive crystals, or thermo-optic media, the QFL team at LKB is focused
primarily on hot atomic vapours of rubidium. Atomic gases exhibit strong nonlinearity when excited by
a near resonant laser field.

I will not delve into the details of the theoretical considerations, choosing only to demonstrate the practical
necessities for the experiments conducted. There are essentially only 3 experimental parameters that one
can manipulate to modify the Kerr nonlinearity in an atomic vapour platform.

Firstly, in an atomic vapour cell the density of the atomic cloud is dependent on its temperature. An
empirical equation for the gas pressure (in units of Torr) inside the cell is given7,

log10 𝑃Rb = 15.88 − 4529
𝑇

+ 0.000586𝑇 − 2.99 log10 𝑇, (9)

valid for 𝑇 ≥ 312.Using the ideal gas law, it is possible to link the pressure to the atom density in the cell,
𝑁 = 𝑃𝑅𝑏/𝑘𝑏𝑇 . We thus have direct and easy control over the interaction strength via the temperature.

Secondly, the detuning of the near-resonant laser field provides crucial control over the strength and
sign of the third-order susceptibility 𝜒 (3) , and thus the nonlinear refractive index 𝑛2. While the analytic
expression of 𝜒 (3) is more complicated, at large detuning it follows a simple law;

ℜ
(
𝜒 (3)

)
∝ 𝑁

Δ3 , (10)
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where 𝑁 is the atomic density, controlled by the temperature, and Δ is the detuning from the resonant
frequency of the transition we’ve selected.

Depending on the sign of the detuning, the system will exhibit either self-focusing (Δ > 0, equivalent
to attractive inter-photon interactions), or self-defocusing (Δ < 0, equivalent to repulsive inter-photon
interactions).

It should be noted that the expression 10 is only valid for large detuning. One could incorrectly assume
that they could dramatically increase the nonlinearity by reducing the detuning Δ as much as possible,
but it should not be forgotten that there is linear absorption at play for small detuning.

The detuning Δ must thus be carefully chosen; there is a trade-off between nonlinearity and linear
absorption that must be considered.

Finally, the nonlinear effects can be enchanced by increasing the fluid beam intensity, since the nonlinear
contribution to the total refractive index is 𝑛2𝐼.

There is a significant caveat to this, mainly due to the fact that at higher intensity, higher order suscepti-
bilities, such as the fifth-order susceptibility 𝜒 (5) which has an opposite sign to 𝜒 (3) , become prominent,
reducing the nonlinear effects. This is accounted for by what is called the saturation intensity. A more
accurate expression for the total refractive index would therefore be

𝑛 = 𝑛0 +
𝑛2
𝑛0

𝐼

1 + 𝐼/𝐼𝑠𝑎𝑡 (Δ)
, (11)

with the saturation intensity 𝐼𝑠𝑎𝑡 (Δ) = 𝐼𝑠𝑎𝑡 (0)
(
1 + Δ2

Γ2

)
, where 𝐼𝑠𝑎𝑡 (0) = 𝜋ℏ𝜔0Γ

3𝜆3 and Γ are the saturation
intensity at resonance, and the linewidth of the atomic transition in question.

3 Experimental methods

The standard method for the characterisation of nonlinear optical properties of materials is the so-called
z-scan technique8. However, in our case, off-axis interferometry is employed, which doesn’t require
scanning the nonlinear material over any range. Instead, a Mach-Zehnder type interferometer is used,
with the reference and fluid beams having a relative angle between them. Following the phase retrieval
procedure described in subsection 3.2, it is possible to gain access to the self-Kerr and cross-Kerr
nonlinearity through the self-phase modulation.

Though self-Kerr nonlinearity has already been detailed in subsection 2.1, the main goal during this
internship was to study the effects of cross-Kerr nonlinearity between two fluid beams, meaning the
nonlinearity that one fluid beam attributes to the other, as they propagate through the nonlinear medium.
To this end, an experimental setup was needed where two separate laser beams can be independently
controlled, both in intensity and frequency in order to study the effects of cross-Kerr nonlinearity, all
while having control over these two parameters.

3.1 Experimental setup

The experimental setup essentially consists of two independent lasers, both of which traverse the rubidium
vapour cell, as well as two Mach-Zehnder interferometers9. In the following paragraphs, the path of one
of the laser beams is detailed to better understand its functionality.

The linearly polarised laser beam initially passes through a half-wave plate and a polarising beam splitter,
giving crucial control over the fraction of light going into the reference and fluid beams.

Following the fluid beam, it first passes through the rubidium vapour cell, where it spatially overlaps with
the other fluid beam. This is crucial to study the effects of cross-Kerr nonlinearity. A polarising beam
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8 Paraxial fluids of light

splitter then separates the two fluid beams issued from each laser. A simple beam splitter then recombines
the reference and fluid beams to be imaged onto the camera.

The half-wave plate preceding the beam splitter allows for the manipulation of the fluid beam polarisation.
It is essential to ensure that both reference and fluid beams are polarised in the same direction when
recombined; otherwise, the interference fringes will have a severely low contrast, or even be non-existent
in the case where the beams are cross-linearly polarised.

Figure 3 provides a simplified schematic of the experimental setup. Missing from the diagram are several
key optical elements:

First and foremost, a 4f telescope system is included in both reference and fluid branches of the setup,
albeit for different reasons.

In the reference branch, two convergent lenses with carefully selected focal points 𝑓1 and 𝑓2 are selected,
such that the reference is magnified by a factor of 𝑓2/ 𝑓1 > 1 .

Concerning the fluid beam, a 4f-system is used to image the fluid beam directly at the exit of the rubidium
cell, thus limiting diffraction due to free space propagation.

Finally, neutral density filters are placed on the optical path of both beams, so as not to saturate and
damage the camera sensor.

Regarding the choice of the rubidium vapour cell, it was decided beforehand that a single isotope vapour
would be used, as it has an energetic landscape that is much simpler than that of a naturally occurring
rubidium gas, which contains two isotopes. This significantly simplified detuning considerations, as
we had to take into account only two transitions of the 85Rb D1 line; 52𝑆1/2, 𝐹 = 2, 3 → 52𝑃1/2. The
hyperfine structure of the excited state is deemed irrelevant since it is undetectable due to thermal Doppler
broadening.

Figure 3: Simplified schematic diagram of the experimental setup. Different shades of red are used to
differentiate the beams issued from lasers 1 and 2. Half of the light intensity which is lost through the
beam splitters, as well as the 4f-systems and neutral density filters are not depicted to avoid a cluttered
diagram.

3.2 Phase measurement: Off-axis interferometry

Unlike ultracold atomic gases, the phase of fluids of light is relatively easy to extract through interfero-
metric techniques. In our case, off-axis interferometry is used to measure the self-phase modulation of
the fluid beam. This gives paraxial fluids of light a considerable advantage over ultracold atomic gases,
as a well adjusted setup allows for rapid phase retrieval of up to several dozen 𝐻𝑧.
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Consider a fluid and reference beam, 𝐸 𝑓 and 𝐸𝑟 respectively, superposed with a certain angle. k⊥
denotes the transverse wavevector of the reference beam with respect to the signal, which is null if the
angle between the two beams is also null. This configuration creates interference patterns, which are
imaged on the camera.

The signal imaged on the camera will be proportional to the intensity of both fluid and reference beam
envelopes,

𝐼cam(r⊥) ∝ |𝐸𝑠 (r⊥)𝑒i𝜙 (r⊥ ) + 𝐸𝑟 (r⊥)𝑒ik′
⊥r⊥ |2 = 𝐼𝑠 (r⊥) + 𝐼𝑟 (r⊥) + 𝐸∗

𝑠𝐸𝑟𝑒
−𝑖 (𝜙−k′

⊥r⊥ ) + 𝐸𝑠𝐸
∗
𝑟 𝑒

𝑖 (𝜙−k′
⊥r⊥ )︸                                         ︷︷                                         ︸

modulated part

.

(12)
The first two terms simply give the intensity of each beam. The interference fringes arise from the
underlined modulated part.

In order to retrieve the phase 𝜙(r⊥) of the fluid beam, it is necessary to pass into 𝑘-space by means of a
Fourier Transform. After filtering the appropriate signal from the Fourier plane, the phase is successfully
recovered from the interferogram.

Applying the Fourier Transform on 𝐼𝑐𝑎𝑚(r⊥), the intensity imaged by the camera in 𝑘-space is as follows:

𝐼cam(k⊥) = 𝐼s(k⊥) + 𝐼r(k⊥)+F
[
𝐸𝑠𝑒

i𝜙 (r⊥ ) ] (k⊥)∗
{
𝐸̃𝑟 (k⊥ − k′

⊥)
}
+F

[
𝐸𝑠𝑒

−i𝜙 (r⊥ ) ] (k⊥)∗
{
𝐸̃𝑟 (k⊥ + k′

⊥)
}
.

(13)

It is thus possible to extract the phase from the third or fourth term. These terms manifest in 𝑘-space in
the form of two sidebands(or satellite peaks), symmetric to the zeroth order central peak.

To further simplify equation 13, care is taken to magnify the reference beam, making it much larger than
the fluid beam. The reference beam’s Fourier transform is therefore much narrower than the fluid beam’s,
allowing the approximation 𝐸̃𝑟 (k⊥ ± k′

⊥) ≃ 𝛿
(
k⊥ ± k′

⊥
)

. The convolution product is therefore a simple
shift by k′

⊥ .

Following the above procedure, the intensity is simplified;

𝐼cam(k⊥) ≃ 𝐼s(k⊥) + 𝐼r(k⊥) + F
[
𝐸𝑠𝑒

i𝜙 (r⊥ ) ] (k⊥ + k′
⊥) + F

[
𝐸∗
𝑠𝑒

−i𝜙 (r) ] (k⊥ − k′
⊥)︸                                                                 ︷︷                                                                 ︸

modulated part (sidebands)

. (14)

The next step of the phase measurement procedure is to spatially filter the image in the Fourier plane,
leaving only one of the sidebands. This removes the first two terms, which are contained in the zeroth
order peak, leaving only one term from the modulated part of equation 14.

Let 𝑇 (k⊥) be the band-pass filter through which one of the satellite peaks is selected. The filtered
intensity is thus F

[
𝐸∗
𝑠𝑒

±i𝜙 (r) ] (k⊥ ± k′
⊥) ∗ 𝑇 (k⊥) .

Finally, by applying the inverse Fourier transform on the filtered sideband, and by shifting the signal by
±k⊥ (the sign depends on which sideband was selected, the shifting rolls the filtered signal to the centre
of the Fourier plane), the following signal is retrieved:

𝐸𝑠𝑒
±i𝜙 (r⊥ ) ∗ F −1 [𝑇 ] (r⊥). (15)

The phase is consequently retrievable through the argument of expression 15. Of course, the density (or
intensity) of the fluid beam is also accessible through the magnitude of the aforementioned expression.

It should be noted that if the band-pass filter used is circular in form, its inverse Fourier transform
F −1 [𝑇 ] (r⊥) gives rise to an Airy disc. To limit the deformation of the recovered field, it is advisable
to maximise the radius of the circular filter. This fixes the ideal location of the sidebands in the Fourier
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10 Paraxial fluids of light

plane to the centre of its quadrants, allowing for the maximal radius of the circular filter, all while filtering
out the zeroth order signal.

Figure 4 provides a concise and helpful visual aid to understand the phase retrieval process.

Interferogram

Fourier
transform Filtering

Roll
(demodulation)

Phase (taking the argument)Phase (gaussian removed)

Figure 4: Phase retrieval process. After applying the Fourier transform on the interferogram, one of the
sidebands is selected and filtered. The sideband is the shifted by k⊥ , bringing it to the centre of the
Fourier plane. The inverse Fourier transform is subsequently applied, and the argument of the signal is
taken to retrieve the phase.1

4 Data acquisition and analysis

Much time during this internship was dedicated to creating an automated interface between the cameras
and lasers in order to effectuate the desired measurements at the click of a button.

More specifically, I wrote a Python code interfacing a Point-Grey camera along with the 2 lasers. The code
allows for live measurements of the Kerr nonlinearity, using the phase measurement process described
in subsection 3.2, all while giving the ability to modulate the frequency of the lasers(through control of
the laser temperature) to study the influence of one fluid beam on the other. It also significantly eases the
optical alignment of the reference and fluid beam.

After acquiring the nonlinear phase modulation 𝜙(r) through off-axis interferometry, a cut-off filter is set
at 1% of the maximal intensity of the fluid beam in order to filter out noisy data. The phase being modulo
2𝜋, it is unwrapped to reconstruct the complete phase of the fluid beam’s wavefront. The azimuthal
average of the phase is then calculated in order to acquire the radial phase profile. Nonlinear phase
modulation is then calculated by 𝜙𝑁𝐿 = 𝜙(𝑟𝑚𝑎𝑥) − 𝜙(0). Finally, the nonlinear refractive index is
retrieved through the expression 𝜙𝑁𝐿 = 𝑘0𝐿Δ𝑛

10, where 𝑘0 = 2𝜋/𝜆 is the wavenumber of the atomic
transition, 𝐿 is the length of the cell, and Δ𝑛 = 𝑛2𝐼.

An important point of contention with this method is that the percentage at which the cut-off filter is set
is quite arbitrary, giving different values of the Kerr nonlinear index for different values of the cut-off
point. Unfortunately, it seems that not much is possible to avoid this; as the fluid beam defocuses, the
light on the edges of the gaussian profile becomes increasingly spread out and weak in intensity, leading
to a noisy phase profile. In any case, the cut-off was fixed at 1%, which seemed to be a good compromise
between removing the noisy data and keeping most of the phase profile.

As an example, figures 5 and 6 show the phase profile of a given fluid of light before and after applying
the cut-off filter and unwrap.
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Figure 5: Raw phase profile of a defocusing fluid
of light. Figure 6: Unwrapped and filtered phase.

Measuring the frequency of the lasers was evidently important for our measurements. Unfortunately, the
wavemeter in the lab was quite often unavailable. Instead, the frequencies were measured for various
values of the laser temperature; it was found that the relationship between the laser frequency and
temperature is almost perfectly linear. After applying a linear regression, this model was used to calculate
the frequencies of the laser through its temperature. Figure 7 presents this procedure.

Figure 7: Relationship between the frequency and temperature of laser 2.

5 Results

The main focus was put on the self-defocusing regime, meaning the laser frequency had to be be red-
detuned (Δ < 0). An 8 𝑐𝑚 long 85Rb cell was used. We experimented with a variety of rubidium cells,
containing either 85Rb or 87Rb. An 85Rb cell was ultimately chosen because the other cells would imprint
weird artifacts on the light when imaged.

The principle of the measurements is the following:

Laser 1 is fixed at a certain red-detuned frequency at which the self-phase modulation seems to be
maximal. The self-Kerr refractive index Δ𝑛 = 𝑛2𝐼 is measured via the Point-Grey camera (1). The
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12 Paraxial fluids of light

second laser beam is then allowed into the system. The nonlinear refractive index of the laser 1 fluid
beam is measured for a range of frequencies of the laser 2.

There are mainly two simplified scenarios one can imagine in which the cross-Kerr nonlinearity might
be measured.

In the first case, both fluid beams issued from lasers 1 and 2 have the same intensity. Using a power
meter, the fluid beams intensity was measured to be around 500 𝑚𝑊 . Let’s assume 𝐼1 = 𝐼2 = 𝐼0/2, with
𝐼1, 𝐼2 the intensity of the fluid beams from lasers 1 and 2, and 𝐼0 the total intensity in the vapour cell.
First, a measurement of the self-Kerr nonlinearity of the fluid beam from laser 1 is made, in the absence
of laser 2, at intensity 𝐼1 = 𝐼0/2, denoted as Δ𝑛𝐼0/2 = 𝑛2𝐼0/2. A histogram of the measured Δ𝑛𝐼0/2 values
taken over the course of around 30 seconds is shown in figure 9. Then, adding laser 2 back into the
system, another measurement of the nonlinear refractive index is made, this time Δ𝑛 = (𝑛12 + 𝑛2) 𝐼0/2,
where 𝑛12 is the cross-Kerr nonlinear index. The cross-Kerr nonlinearity can therefore be extracted by
Δ𝑛 − Δ𝑛𝐼0/2 = 𝑛12𝐼0/2.

Figure 8: Plot showcasing the cross-Kerr nonlinear index of laser 1 (as explained in the first case of
section 5) in function of the frequency of laser 2.

Figure 8 shows the measured cross-Kerr nonlinearity employing the aforementioned method. The
cross-Kerr nonlinearity 𝑛12𝐼 is of the order of 10−6, while the self-Kerr nonlinearity 𝑛2𝐼 is typically
of the order of 10−5(see figure 9). There seem to be three regions of frequency where the cross-Kerr
nonlinearity becomes noticeable. Although no theoretical framework has been made to predict the
cross-Kerr nonlinearity, it is theorised that these regions arise in two cases.
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Figure 9: Histogram of the measured self-Kerr nonlinearity values of laser 1, in the absence of laser 2,
taken over the course of around 30 seconds. A gaussian fit is applied to calculate the best guess estimate
of Δ𝑛𝐼0/2 along with the associated uncertainty.

The negative cross-Kerr nonlinearity could be due to the second fluid beam pumping atoms away from
the ground state into the excited state, thus making the medium more transparent to the first fluid beam
with less powerful interactions. The increase in cross-Kerr nonlinearity between the two negative dips is
likely due to the second fluid beam approaching resonance, which in turn makes the medium opaque (to
the second fluid beam) and significantly diminishes the optical path it traverses. Since the second fluid
beam is absorbed rapidly within the cell, its contribution to the cross-Kerr nonlinearity diminishes.

The small increase of cross-Kerr nonlinearity could be explained by the second fluid beam pumping the
medium’s atoms into the ground state, thus increasing the opacity of the first fluid beam, and in turn
increasing the strength of photon-photon interactions.

In the second case, the majority of the light intensity goes into the fluid beam issued from laser 2, such
that 𝐼1 + 𝐼2 ≈ 𝐼2 ≈ 𝐼0, with 𝐼1 ≪ 𝐼2. In this situation, measuring the nonlinear index of fluid beam 1 in
the presence of both lasers directly gives the cross-Kerr nonlinearity, Δ𝑛 ≈ 𝑛12𝐼2.

Figure 10 showcases the second method. The first fluid beam is set to around 50 𝑚𝑊 , while the second
fluid beam is set to around 350 𝑚𝑊 . The results from this method seem to be dubious at best. For
one, the measured nonlinearity, which is supposed to be entirely due to the cross-Kerr nonlinear index,
is of the order of 10−5, in direct contradiction with the first method. It is possible that this is due to the
intensity of the first fluid beam not being low enough. Unfortunately lowering its intensity was not an
option, because there were issues with the camera imaging being too faint or completely dark. Moreover,
there is a frequency window at which the measured values of Δ𝑛 are invalid, or present an unusually high
uncertainty. This is again likely due to the second laser beam approaching resonance within the rubidium
vapour cell, thus making the camera’s image too faint for proper processing. These issues forbid making
any physical interpretation of figure 10.
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14 Paraxial fluids of light

Figure 10: Plot showcasing the cross-Kerr nonlinear index of laser 1 (as explained in the second case of
section 5) in function of the frequency of laser 2.

6 Conclusion

Quantum fluids of light provide a unique perspective to probe into the physics of quantum hydrodynamic
systems, bringing with them their own advantages and challenges.

Although measuring the cross-Kerr interaction in itself takes a matter of a few seconds, creating an
experimental setup, and developing the tools to measure it in a reliable and automated manner took much
of the internship’s time.

To my chagrin, the internship was short-lived, and much of the work put into it had to be cut prematurely.
This is especially unfortunate since most of the measurements and data presented in this report were taken
in the last few days of the internship. Thankfully, the work will be continued by S. Lepleux, and with a
bit of luck, there will soon be more data to present (potentially at the oral examination of the internship).

In any case, this internship was a truly enriching experience that allowed me to dive into the deep end
of physics research, and I must thank all of the QFL team for creating a welcoming and intellectually
nourishing environment.
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