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International Center for Fundamental Physics, 2nd Year of
Master, Final internship Report

Study of vortices interaction and solitons
in a quantum fluid of light

Student:
Simon Lepleux
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1 Introduction

In the last 30 years, physicists have tried to use the laws of quantum physics to control
complex systems, creating what we now call the ”second quantum revolution”. In this
quest for controllable ensembles of quantum systems, platforms like cold gases [?, 1],
exciton-polariton condensates [2, 3], superconducting circuits [4], dye-filled cavities [4] or
in our case hot atomic vapors [5] were developed.

In this effervescence, quantum fluids of light have emerged as a competitive option due
to their relative simplicity and excellent imaging capabilities comparatively to cold gases
for instance, where non-destructive measurement of the system is difficult. In fluids of
light, the quantum particles are photons whose control is made easy by all the knowledge
accumulated during centuries of optics. However, photons do not interact in a vacuum.
We thus need to engineer interactions between them using nonlinearities. If these inter-
actions are repulsive, the photons will behave collectively and exhibit fluid-like behavior.
Hydrodynamical effects from vortex dynamics [6], dispersive shock waves [7] up to large-
scale hydrodynamical phenomena like turbulence [8] were successfully probed in fluids of
light.

This internship report contains three sections each dedicated to a different aspect of
the study: theory, experiment, and simulation. The first section is devoted to introducing
the theoretical concepts and description of paraxial fluids of light. The second section
details the experimental observation of singularities in fluids of light and the study of
their stability. The third section focuses on a simulation of the dynamics of fluids of light
and compares its results with the experiment.
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2 Quantum fluids of light

In this section, we will establish the theoretical basis for the concept of fluids of light.
Light exhibiting fluid-like behavior was studied during the last 20 years in platforms like
micro-cavity exciton polaritons [2], dye-filled cavities [9] or photorefractive crystals [10, 11].
Core features of quantum fluids such as superfluidity [2, 11] or Bose-Einstein condensation
[9, 3] were shown to occur in these platforms. In this work, we use a hot atomic vapor cell
as a nonlinear medium to generate a quantum fluid of light.
To understand these phenomena, we will first describe the propagation of light in a non-
linear medium. We will then look at how we can formulate a mean-field approach to
light propagation. Finally, we will describe the different singularities that can appear in a
quantum fluid of light. The two first subsections rely heavily on the theoretical framework
summarized by Tangui Aladjidi in his recent PhD thesis [12].

2.1 Propagation of light in non-linear media

2.1.1 From Helmholtz Equation to Nonlinear Schrödinger equation

Let us consider the propagation equation of an electric field E(r, t) as it passes through
a medium. From Maxwell equations, we can derive the starting point of the propagation,
the so-called Helmholtz equation, whose source term is the electric polarization P(r, t)
in the medium:

∇2E− 1

c2
∂2E

∂t2
=

1

ϵ0c2
∂2P

∂t2
(1)

with c being the speed of light and ϵ0 the electrical permittivity of vacuum.
The polarization field P describes the response of the medium to the illumination of the
incident field E. To account for possible nonlinearities, we expand P in a power series in
terms of E:

P(r, t) = ϵ0

∞∑
n=1

χ(n)En(r, t). (2)

We define here χ(n) as the electric susceptibility of the medium. Strictly speaking, χ(n) is a
n+1 rank tensor but by taking advantage of various symmetries, one can greatly simplify
this expression [13]. Indeed, an atomic vapor is centrosymetric and isotropic. This
eliminates all even order terms in the expansion of the susceptibility χ. If we limit our
expansion to the third order (i.e the first non-linear order), and keep only resonant terms
oscillating at ω then the expression in the frequency domain for the electric polarization
simply becomes:

P(r, ω) = ϵ0

[
χ(1)(r, ω)E(r, ω) + 3χ(3)(r, ω)|E(r, ω)|2E(r, ω)

]
. (3)

We can now rewrite eq.1 in terms of the amplitude E of the field. Assuming a monochro-
matic light field, we can also simplify this amplitude by separating the envelope and
carrier wave E = 1

2(Ee
iωt + E∗e−iωt). Looking at the resulting equation for the envelope,

we obtain:

∇2E(r, ω) + ω2

c2
[1 + χ(1)(ω)]E(r, ω) = −3

4

ω2

c2
χ(3)(ω)|E(r, ω)|2E(r, ω). (4)
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2.1 Propagation of light in non-linear media

If we introduce the vacuum wavenumber k0 = ω/c of the laser light and the linear index of
refraction: n(ω) =

√
1 + χ(1)(ω). We can thus finally reformulate the previous equation

as follows:

∇2E(r, ω) + k(ω)2E(r, ω) + iαk(ω)E(r, ω) = −3

4

ω2

c2
χ(3)(ω)|E(r, ω)|2E(r, ω) (5)

where we have defined the medium wavenumber k(ω) = k0Re(
√
1 + χ(1)) and the linear

absorption coefficient α = k0Im(
√
1 + χ(1)). We would still like to simplify this equation

further to gain more physical insight. For this, we rely on two crucial approximations:

• The slowly varying envelope approximation: the envelope E is a slowly varying
function of z relative to the carrier wavelength λ = 2π

k0
. This allows to decouple the

transverse dynamics of the envelope and the longitudinal dynamics of the carrier
such that E(r, z) = E(r⊥, z)eik(ω)z.

• The paraxial approximation: the beam will deviate only slightly from the optical
axis such that ∂2zE ≪ k∂zE ≃ ∇2

⊥E meaning that the Laplacian term becomes
∇2E ≃ −k2E + 2ik∂zE +∇2

⊥E

These two approximations are at the heart of the physics described in this work and high-
light the 2D+1 nature of our geometry (2 space dimensions and 1 time dimension) further
detailed in section 2.1.2.
Now in the general case, considering that the laser beam has a certain spectral exten-
sion δω, we should consider the effect of dispersion. However, for all of the experiments
described in this work, we use a continuous wave (CW) laser, meaning that the spectral
extent of our laser light δω is small compared to ω. The effects of dispersion in the lon-
gitudinal axis will then be negligible compared to the evolution in the transverse plane
due to interactions. Our system can thus essentially be considered as 2D+1 through
translational invariance of the longitudinal dimension. Switching back to the time domain,
we obtain finally the generic propagation equation describing our system:

i
∂E
∂z

= − 1

2k(ω)
∇2

⊥E − i
α

2
E + g(r⊥, t)|E|2E . (6)

We can now introduce the non-linear interaction coefficient g(r, t) = k0
3χ(3)

4n(ω0)
related to the

classical non-linear index of refraction by n2 = 3χ(3)

4ϵ0cRe(n(ω0))
that has the dimension

of m2/W . We can then derive the non-linear index of refraction variation ∆n = n2I
where I is the field intensity. This allows us to link experimental parameters to the
interaction strength governing the evolution equation through the measurement of the
index of refraction change. If we also include a local variation of the index of refraction
δn(r, z), we end up with the final general classical propagation equation, the so-called
non-linear Schrödinger equation (NLSE):

i
∂E
∂z

= − 1

2k(ω)
∇2

⊥E︸ ︷︷ ︸
Kinetic

+ k(ω)
δn(r, z)

n(ω0)
E︸ ︷︷ ︸

Potential

− i
α

2
E︸︷︷︸

Losses

+ g(r, t)|E|2E︸ ︷︷ ︸
Interaction

(7)
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2.1 Propagation of light in non-linear media

Figure 1: (adapted from [12]) Effect of the different terms of the NLSE. The initial and
final transverse profiles are circled by a dotted gray line. The transverse profiles represent
the phase resulting from each term, labeled ϕ. Here is represented the case of a negative
non-linear coefficient n2 i.e. a defocusing non-linearity thus expanding the beam. The
kinetic energy term in blue highlights the diffraction originating from the double gradient.
The potential term in orange depicts the case of a positive δn i.e. an attractive potential.

where we decomposed the equation between all of its constituents: kinetic, potential, and
interaction terms. We will now analyze each term of this equation. Looking at eq.7, we
identify 4 different terms depicted graphically in fig.1 adapted from [12]:

• Kinetic energy (in blue): In the transverse direction, this term corresponds to the
curvature of the field and thus describes diffraction.

• Potential energy (in orange): A localized index of refraction change acts as a
potential for the light field. Assuming a quadratic shape δn ∝ r2⊥, a negative δn
will act as a diverging lens or repulsive potential, while a positive δn will lead to a
converging phase profile or attractive potential. In the case of hot atomic vapors,
we realize this potential using optical pumping of the D1 line.

• Interaction energy (in green): This is the so-called Kerr term describing effects
such as self focusing or defocusing. It is often expressed as the non-linear index of
refraction variation ∆n = g|E|2/k0 or ∆n = n2I. In the case of a positive n2 non-
linear coefficient, with a Gaussian intensity profile |E|2, this results in a negative
phase accumulated (with respect to a reference beam passing through the air) at
the high-intensity center of the beam thus focusing it. In the case of a negative n2,
the opposite effect occurs, and a positive phase is accumulated at the center of the
beam resulting in self-defocusing. In this work, we will not study the self-focusing
case as it is not energetically stable due to the filamentation effect [14].
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2.2 Mean-field formulation

• Losses (not represented): Linear absorption coefficient due to the imaginary part
of the first order susceptibility χ(1). In this work, this refers to atomic absorption.

We will now reformulate the non-linear equation using a change of referential.

2.1.2 Comoving frame

The situation that we have is the following: we want to study the propagation of a pulse
within a dispersive medium. Within the paraxial approximation, the dynamics of the field
are confined to transverse planes moving at the group velocity vg. We are thus tempted
to exchange the role of the actual time t and the third spatial coordinate z which is an
effective time. We carry out this variable change by defining the following two new
coordinates: an effective time τ = z/vg and an effective new dimension ζ = vgt− z.
By defining a new field ψ depending on the new variables such that:

E(x, y, z, t) = ψ(x, y, vgτ,
1

vg
(vgτ + ζ)). (8)

We thus retrieve a new evolution equation for the field ψ that reads:

i

vg

∂ψ

∂τ
= − 1

2k0
∇2

⊥ψ + V (r, τ)ψ + g(r, τ)|ψ|2ψ (9)

where we have substituted the potential term k(ω) δn(r,z)n(ω0)
by V (r, τ) for clarity. This is

strongly reminiscent of the Gross-Pitaevskii equation (GPE) describing the evolution of
interacting bosons [1]. This analogy will be detailed in section 2.2.2.

2.2 Mean-field formulation

Having established the equations for the paraxial propagation of laser light within a non-
linear medium, we would like to explain its quantum properties by deriving a quantum
version of these equations. For this section, we will rely heavily on seminal works by
Pierre-Élie Larré and Iacopo Carusotto who laid the theoretical foundations for the study
of quantum fluids of light [15, 16]. The obvious issue in the eq.9, is the nonlinear inter-
action term that prevents simple integration of this equation. To deal with this, we want
to establish first a free field theory that studies the behavior of small amplitude quantum
fluctuations on top of a classical mean-field (background). Secondarily, we will compare
the resulting equation to the GPE for interacting bosons.

2.2.1 Bogoliubov theory

We can look for solutions in the form of:

Ê = E0︸︷︷︸
Mean field

+ δÊ︸︷︷︸
Fluctuations

(10)

where the fluctuations operator obeys the usual commutation relations. We know that
the evolution of the mean-field is simply described by eq.7. This allows us to retrieve an
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2.2 Mean-field formulation

Figure 2: (from [12]) Analytical calculation of the Bogoliubov dispersion ΩB for typical
experimental parameters n2 = −5 × 10−9 m2/W, P0 = 1 W and w0 = 2.35 mm. Only
the real part of the dispersion is shown here since the only imaginary part of the function
is absorption.

equation for δÊ only. As we want a free field theory, we will truncate to first order. We
are thus left with a linearized propagation for the fluctuations [15]:

i
∂δÊ
∂z

= − 1

2k0
∇2

⊥δÊ + g(r, z)
[
2|E0|2δÊ + E2

0 δÊ†
]
− iαδÊ . (11)

As it is, direct integration of this equation is impractical. Indeed, we can rewrite it in the
form of a matrix acting on the vector (δÊ , δÊ†), but this matrix is not diagonal. We thus
use the Bogoliubov transform [1] to introduce new operators b̂k⊥ called the Bogoliubov

quasi-particles. The b̂k⊥ operators are the eigenmodes of the evolution matrix and their
eigenvalue is the Bogoliubov dispersion [17]. The spectrum of the transformation yields:

ΩB(k⊥) =

√
k2
⊥

2k0

( k2
⊥

2k0
+ 2g|E0|2

)
− i

α

2
. (12)

This dispersion relation is represented in fig.2 and has several major features crucial for
understanding the dynamics of quantum fluids. It is divided into two regions separated
by the typical scale kξ =

√
k0g|E0|2 = k0

√
∆n = 2π

ξ where ξ is the healing length:

• A linear sonic region under kξ where ΩB(k⊥) ≈ csk⊥ with cs = c
√
g|E0|2/k0 =

c
√
∆n defining the speed of sound.

• A quadratic particle-like region above kξ where ΩB(k⊥) ≈
k2
⊥

2k0
.
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2.2 Mean-field formulation

The healing length ξ represents the scale under which we can no longer consider the fluid
as a collective ensemble. The corresponding momentum scale kξ represents the critical
momentum at which superfluidity breaks down. It is also has profound meaning in atomic
Bose-Einstein condensates, where excitations under the healing length kick atoms out of
the condensate [1].
The existence of sound-like excitations in fluids of light has dramatic implications that
cannot be described well within the language of non-linear optics. Such a striking phe-
nomenon has been observed experimentally by Quentin Fontaine in [17]. We have thus
seen in this section that the photon-photon interactions that are mediated by the atom-
light interaction within the vapor introduce effects that go beyond classical non-linear
optics treatments, and rather fall in the phenomenology of cold atomic ensembles. With
this in mind, I will now detail this comparison with cold Bose gases to extract meaningful
insight from what has been a very successful experimental platform for quantum physics
these last twenty years.

2.2.2 Analogy with the Gross-Pitaevskii equation

It is known bosonic atoms condense below a certain critical temperature into a Bose-
Einstein condensate (BEC). Experimentally, this phenomenon is realized by cooling down
atoms in optical traps using a wide range of techniques pioneered by Claude Cohen-
Tannoudji, Steven Chu, and William Daniel Phillips granting them the 1997 Nobel Prize.
Since the first experimental observation of a BEC in 1995 at JILA [18], many groups
have carried out similar research to study effects such as superfluidity and supersolidity.
One can show [1] that the equation governing the wavefunction of atoms in a BEC is the
Gross-Pitaevskii equation (GPE):

ih̄
∂Ψ

∂t
=

h̄2

2m
∇2Ψ+ VΨ+ g|Ψ|2Ψ (13)

where m is the atomic mass, V is the confining potential, g the interaction constant.
We can then use the Bogoliubov formalism as in section 2.2.1 to recover the Bogoliubov
dispersion where the energy of the Bogoliubov excitations at momentum p is:

h̄ω(p) =

√
p2

2m

( p2
2m

+ 2gρ0

)
(14)

assuming that ρ0 is the condensate density. From the dispersion relation, we can derive
the healing length ξ = h̄/

√
2mgρ0 and the speed of sound cs =

√
gρ0/m. We now have

common units of space and speed to compare the evolution of fluids of light and cold
atomic ensembles.
At this stage, we recall that in section 2.1.2 we introduced a basis change substituting
time and z dimensions and recovered the full 2D+1 evolution equation of the fluid of light
described by eq.9. We notice that the NLSE in the comoving frame is mathematically
equivalent to the GPE in 2 dimensions.
We can now already identify the equivalent terms in both GPE and NLSE. In the case of
BEC, the interaction parameter is the chemical potential µ = gρ0. From the comparison of
eqs.9 and 13 we find that the equivalent parameter for fluids of light is h̄cg|E0|2 = h̄ω0∆n.
To give numerical orders of magnitude, trapping frequencies in typical BEC experiments
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2.3 Singularities in quantum fluids

are in the kHz range [19]. In our case, typical values of the non-linear dephasing are
∆n ∼ 10−5, corresponding to a frequency in the 10 GHz range. This means that typical
interactions in a photon fluid are seven orders of magnitudes larger than in atomic
BECs. This explains why it is possible to observe much of the same physics as Bose gases
even though the interaction times are much smaller (travel time through the Rubidium
cell is on the order of a few 100 ps compared to the millisecond to second time scale used
in cold atoms experiments).

2.3 Singularities in quantum fluids

The NLSE is at the heart of several hydrodynamics effects like rogue waves, solitons[20, 2]
and vortices [21]. It is then natural to recast the previous equation 7 to a hydrodynamics
formulation. We rewrite the complex field of the electric field envelope E as follows [22]:

E(r⊥, z) =
√
ρ(r⊥, z)e

iΦ(r⊥,z). (15)

We can now define the velocity of the field as v = c
k0
∇Φ(r⊥, z). In this way, speed is

essentially the instantaneous wavevector of the field i.e. the direction in which it will evolve.
Plugging this relation into eq.7, we retrieve the well known quantum Euler equations
[22]:

∂ρ

∂z
= −1

c
∇⊥(ρv)− αρ (16)

∂v

∂z
= − 1

2c
∇⊥v

2 − c

k0
∇⊥

(
gρ− 1

2k0

∇2
⊥
√
ρ

√
ρ︸ ︷︷ ︸

Quantum pressure

+V
)

(17)

Now that we have a hydrodynamical formulation for the evolution of the field E , we will
describe the singularities that can exist inside this quantum fluid.

2.3.1 Vortices

Quantum vortices are local topological defects exhibited in superfluids and superconduc-
tors. In superfluids, a quantum vortex ”carries” quantized orbital angular momentum ℓ.
We know from [23] the wavefunction for a vortex of charge ℓ centered at the origin in polar
coordinates:

Ψℓ(r, θ) =
√
ρ0

(
r√

r2 + ξ2/Λ2

)|ℓ|

eiθℓ (18)

vℓ(r, θ) =
c

k0
∇Φ =

c

k0

ℓ

r
uθ (19)

where ρ0 is the background fluid density, ξ the healing length and Λ is a constant ≃ 0.82.
The density and phase of the quantum fluid around a vortex of charge ℓ = 1 are represented
in fig.3(a) and (b). We observe that the phase winds around a density hole at the center
of the vortex reminding the characteristics of optical vortices [24]. We plot the velocity
field v generated by the vortex in fig.3(c) on top of which we show a colormap of |v|. We
obtain an irrotational flow as expected from 19 where velocity is orthoradial and peaks
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2.3 Singularities in quantum fluids

at the center of the vortex. Vortices of charge ℓ > 1 can be generated in quantum fluids
but are shown to be unstable [25]. After a critical time, they will break into lower-charge
vortices until only a collection of ℓ = 1 vortices remains.

Figure 3: Numerical simulation of the wavefunction of a quantum vortex of charge ℓ = 1:
(a) density of the wavefunction, (b) phase of the wavefunction, (c) white arrows: velocity
field generated by the phase gradient, background: norm of the velocity (log scale)

2.3.2 Jones-Roberts solitons

A soliton is a localized wavepacket that propagates in a field without deformation. It can
exist in material fields [26], BECs [27], optical fields [28] or even magnets [29]. We call a
soliton ”bright” (resp. ”dark) when it generates a peak (resp. a gap) of intensity at its
center. In 1D, solitons are stable solutions of the propagation equation. In 2D however,
solitons tend to deform and break apart due to what is commonly called the ”snaking”
instability [30].
A few decades ago, a special class of dark quasi-solitons was theorized: Jones-Roberts

solitons (JRS) [31]. They are the only known class of stable dark solitonic solutions of

Figure 4: Numerical simulation of the wavefunction of a Jones-Roberts soliton: (a) den-
sity of the wavefunction, (b) phase of the wavefunction, (c) white arrows: velocity field
generated by the phase gradient, background: norm of the velocity (log scale)
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the NLSE in two and three dimensions. They feature a distinctive elongated elliptical
shape that allows them to travel without change of form. Observations of JRSs have been
reported in BECs but remain elusive [32]. Recently, our group has been able to generate
stable structures in fluids of light resembling a JRS via merging two vortices of opposite
charge ℓ (equivalently called a dipole). The wavefunction of this singularity is represented
in fig 4(a) and (b). We observe the characteristic elliptical shape for the density of the
JRS and notice that the phase doesn’t present any discontinuities, contrary to vortices.
The (c) panel of fig.4 shows that the norm of the fluid velocity increases around the center
of the JRS. If we study the merging of a vortex dipole, we notice that the direction of the
flow in the center of the dipole reverses when the two vortices merge to become a soliton.
This property will be of particular interest in section 3.3.2.
Fig.3 and 4 were obtained via a numerical solver of NLSE described in more detail in sec-
tion 4.1. We will now explain how to generate and study the dynamics of these singularities
in the context of paraxial fluids of light.

3 Experimental realization of a quantum fluid of light

A wide variety of platforms allow us to study the dynamics of fluids of light. One can
think of micro-cavity exciton polaritons [2], dye-filled cavities [9] or photorefractive crys-
tals [10, 11]. Some of the most striking features of quantum fluids such as superfluidity
[2, 11] or Bose-Einstein condensation [9, 3] have already been observed experimentally on
these platforms. In this work, we chose to work with a hot atomic vapor cell as non-
linear media because it yields several advantages compared to photorefractive crystals or
exciton-polaritons. Indeed, the above-mentioned platforms show much lower tunability
in the nonlinearity and their properties are highly sample dependent. Additionally, hot
atomic vapor cells do not require vacuum chambers and cryostats thus allowing a simpler
implementation.
We will start this section by describing the experimental setup used in our group to ob-
serve the dynamics of the quantum fluid of light. We will then explain how we process
the data to extract meaningful hydrodynamic observables. We will finish by showcasing
the results of an original experiment realized during my internship on the interaction of
multivortices and Jones-Roberts solitons.

3.1 Experimental setup

Experimental observation of quantum fluids of light is made possible by using an interfer-
ometer in a Mach-Zehnder configuration represented in fig.5 taken from [12]. Laser light
generated by a 2W 780nm laser is first split in two different optical paths thanks to a
polarizing beamsplitter (PBS):

• A high power fluid beam is transmitted by the PBS and reflected on a spatial light
modulator (SLM). The SLM is controlled by a computer, it manipulates both the
amplitude and the phase of the reflected beam allowing the impression of specific
wavefunctions into the beam profile. The fluid beam then goes through a 4f system
serving two purposes. We use it firstly to image the plane of the SLM onto the input
face of the rubidium cell. Secondly, a pinhole located at the focal point of the 4f
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3.2 Data processing

Figure 5: Experimental setup for quantum fluid of light generation in hot atomic vapor

system filters all undesired orders of diffraction resulting from the reflection on the
SLM. The fluid beam then penetrates a 20 cm long Rb cell stabilized at 150°C where
the nonlinear effects take place. At this temperature, the density of atoms inside the
cell approaches 1014 atoms/cm3. The fluid beam is then recombined with the other
beam thanks to another PBS.

• A low power reference beam is guided directly to the recombination PBS and will
act as a phase reference.

After recombination, the output plane of the Rb cell is imaged on a CCD camera by a
4f system. The reference beam is overlapped with the fluid beam at an angle allowing to
separate the interference pattern numerically. This is the so-called ”off-axis” interferom-
etry technique detailed further in section 3.2.1. The recovery of interference is also made
easier by the large diameter of the reference beam acquired during its propagation.

3.2 Data processing

The final image collected by the CCD camera does not allow itself to observe the fluid
of light. A further step of data processing is necessary to extract meaningful information
such as density ρ, phase Φ, and velocity v of the fluid.

3.2.1 Amplitude and phase reconstruction

The intensity pattern on the camera resulting from the overlap of the fluid and reference
beams can be written as follows:

Itot = Ifluid + Iref + 2
√
IfluidIref cos(krr⊥ + ϕ(r⊥)) (20)

where Ifluid and Iref are respectively the intensities of the fluid and the reference beam, kr
is the wavevector of the reference beam and ϕ(r⊥) is the phase accumulated by the fluid
beam at position r⊥. The presence of an angle between the fluid and the reference beam
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3.2 Data processing

Interferogram

Fourier
transform Filtering

Roll
(demodulation)

Phase (taking the argument)Phase (gaussian removed)

Figure 6: Procedure to extract the phase of the beam out of the Rb cell. We first perform
a Fourier transform of the camera image, then filter out the low-frequency part. Inverse
Fourier transform allows us to retrieve the phase. The Gaussian background can then be
removed to observe the singularities.

allows to extract the meaningful information ϕ(r⊥) from the offset by demodulating the
signal centered at the frequency kr. An example of the demodulation process is represented
in fig.6 for the case of a flow containing two vortices. We first Fourier transform the image
and apply a circular mask onto the peak at frequency kr. The resulting image is then
translated and we perform an inverse Fourier transform. The resulting field is now free
from any offset component and contains all the information on the density ρ and phase
Φ of the quantum fluid, as described in eq.15.
Due to the Gaussian intensity profile of the beam, the phase accumulated due to the
nonlinearity n2I at the center of the beam is different from the one at the edges. To observe
the dynamics of singularities in the flow, it can be useful to remove that background phase
shift. To do so, we measure this shift from a Gaussian beam with no singularities and
subtract it from the previously extracted phase. This process results in a phase image
containing only signatures of the singularities and is represented in the last panel of fig.6.

3.2.2 Velocity extraction

We know from section 2.3 that we can define a fluid velocity as v = c
k0
∇Φ. However,

applying this definition to the measured phase would generate divergences since the phase
is periodic and suddenly jumps from 0 to 2π at many points of the fluid. To tackle this
issue, we perform a so-called ”unwrapping” of the phase that destroys these discontinuities.
Concretely, the unwrapping is done thanks to built-in Python libraries that shift the phase
by 2π when a jump is detected. After unwrapping we get a perfectly smooth phase pattern
and we use the definition of v to obtain the velocity field.
The values obtained for velocity are not meaningful by themselves. If we want to compare
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3.3 Results of the ”Soliton vs Multivortex” experiment

our system to other quantum fluids we would like to use adimensional quantities. The
most straightforward way to adimensionalize velocity is to compare it to the speed of
sound in the medium cs defined in section 2.2.1 as cs = c

√
∆n. From now on, all the

velocities presented in the following sections will be given in units of cs.

3.3 Results of the ”Soliton vs Multivortex” experiment

Fluids of light offer advantageous resolution and control compared to conventional cold
atoms experiments. These benefits allow us to study more in-depth the dynamics of
quantum fluids and their singularities. It is for instance possible to observe interactions at
a distance and collisions of objects such as solitons and vortices [12, 28]. In the bloodline
of these experiments, I tried to study the evolution of a Jones-Roberts soliton interacting
with a large multivortex (ℓ up to 15). This experiment was motivated by the observation
of a JRS breaking into a vortex pair of opposite charges (probably due to the fast
flow generated by the MV) and was baptized the ”Soliton versus MultiVortex” (SMV)
experiment. It aims at understanding the mechanisms ruling JRS breaking and measuring
precisely the velocities at which this effect occurs. These results could then be compared
to the theoretical values obtained by Smirnov and Mironov in [33].

3.3.1 Experimental sequence

The SMV experiment was constituted by a sequence of 3 steps where we observed for each
step the field at the output of the cell:

• A first step where we input a JRS and a MV of increasing charge ℓ at the entrance
of the cell with the SLM. At the end of this step, 15 images are taken with ℓ ∈ J1, 15K.

Figure 7: Mosaic representing in the reading direction the evolution of the density of the
fluid in the SMV experiment. Each panel corresponds to a MV charge ℓ ∈ J11, 15K
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3.3 Results of the ”Soliton vs Multivortex” experiment

• A second step where only the MV is generated by the SLM allowing to observe
the background flow that it produces for each ℓ.

• A third and last step where no singularities are produced. We thus observe the
Gaussian background of the beam allowing for phase extraction (see section 3.2.1).

Density from the first step is displayed in figure 7. In the first row, the multivortex is small
(ℓ ∈ J1, 5K) and we observe the JRS moving to the right due to the anticlockwise rotating
flow. On the second row, we notice that the JRS splits into two vortices while still being
dragged to the right by the current. The two vortices then keep moving and separate
even more on the third row where ℓ ∈ J11, 15K. We notice here that density measurements
give only a hint of the physics at play in this experiment. We will now study thoroughly
the dynamics of the JRS breaking mechanism by extracting the phase and velocity of the
fluid.

3.3.2 Measurement of the critical velocity

Data from the first step of the SMV experiment allows us to obtain the JRS velocity
vjrs using the extraction method explained in section 3.2.2. To do this, we average the
measured velocity on a 10 px wide square window located on the JRS. We perform the same
measurement on data from the second step of the experiment to extract the background
velocity vbg at the position of the JRS. It is now straightforward to calculate the relative
velocity vr of the JRS with respect to the background flow as:

vr = vjrs − vbg. (21)

The results of this analysis are summarized in fig.8. In panel (a) are represented the
velocities of the JRS and the background for increasing MV charge. We observe that |vbg|
grows linearly with ℓ as theoretically described in eq.19. In a different way, |vjrs| increases
for ℓ below ℓ = 6 and then decreases. This behavior can be explained if we observe the
x ans y components of vr represented fig.8(b). We observe a massive jump form 0.6 cs
to -0.8 cs in the value of vyr when ℓ = 6. A smaller jump also occurs for vxr . We know
from section 2.3.2 that this corresponds to the reversal of the central velocity of the dipole
when the transition from a JRS to a vortex pair occurs.
Knowing that the JRS splits for a MV of charge ℓ = 6 we can explain the decrease in
velocity observed in panel (a): as the vortex pair dissociates due to the background flow,
the distance between the vortices is rising and therefore they slow down [33]. In panel
(c) we finally plot the relative velocity vr with respect to the background velocity vbg to
extract the velocity for which the breaking occurs: approximately 0.8 cs. This result is
not to be taken as a general answer to the JRS breaking puzzle. Indeed, numerous factors
need to be taken into account before trumpeting the results of the experiment:

• First of all, we observed that the result is sensitive to the computational window
size up to 10 %. This parameter is nonphysical and a clear definition of the optimal
window size to measure the velocity of a JRS should be given. Smirnov & Mironov
give a possible answer to this question in [33] when they define a velocity parameter
v̄ computed via an integration of the total wavefunction.
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3.3 Results of the ”Soliton vs Multivortex” experiment

• Secondarily, none of the flows present in the SMV experiment are trivial. The
irrotational flow generated by the MV and the JRS flow are not propagating in the
same direction implying an angle between them. This is not the simplest way
to study the dynamics of JRS breaking and could influence the result. One could
try to make the JRS evolve in a simple uniform flow and extract the velocity at
which breaking occurs. These experiments were not performed during my internship
because of the lack of time.

• Lastly, it is known that solitons are sensitive to variations in the fluid density ρ
[33]. Yet, the inhomogeneity of the background density due to the Gaussian shape
of the beam is not taken into account in the SMV experiment.

Despite these flaws in the SMV experiment, it still is one of the first experimental obser-
vations of a Jones-Roberts soliton in a quantum fluid and the first time we can test their
stability through breaking dynamics. These advances are made possible by the unique
resolution and experimental control available in the study of fluids of light.

Figure 8: Results of the SMV experiment. (a) Evolution of the JRS and background
velocities for increasing MV charge, (b) evolution of the components of vr for increasing
MV charge, (c) norm of vr with respect to the background velocity
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4 Simulation of the evolution of a quantum fluid of light

To get a better physical insight into the dynamics of soliton breaking, it is useful to try
and simulate the evolution of the field in effective time τ . Indeed, the results of the
SMV experiments give the relative velocity at which JRS breaking occurs, but they do
not allow us to actually observe the breaking in real-time. To this mean, we will use a
numerical solver of the NLSE developed in the group by Tangui Aladjidi (available at
quantum-optics-lkb.github.io/NLSE/) to reproduce the results of the SMV experiment.
In this section, I will first describe the working principles of the numerical solver for NLSE.
I will then compute the evolution of the field and the critical velocities in a numerical
analog of the SMV experiment.

4.1 The nonlinear Schrödinger equation solver

To solve the NLSE, we use a spectral split-step method [34]. We first reformulate the
general NSLE (eq.7) into an ”Euler” or ”Runge-Kutta” type of equation:

dψ

ψ
=

(
i
1

2k0
∇2 − iV − ig|ψ|2

)
dz. (22)

This form allows the integration of the equation over a small step δz to obtain:

ψ(z + δz) = e

(
i 1
2k0

∇2−iV−ig|ψ|2
)
δz
ψ(z). (23)

We can thus compute the field after a small propagation step using a simple matrix mul-
tiplication. However, we have to keep in mind that the exponential contains matrices and
cannot simply be split into a product. To tackle this issue, we use the Baker-Hausdorff
formula and keep only first-order terms in δz. We end up with a product of two exponen-
tials eLeN where L is the laplacian part i 1

2k0
∇2 and N the nonlinear part −iV − ig|ψ|2,

this is the split-step method.
We perform one last trick by applying the Laplacian part in Fourier space where ∇ = ik.
We transform back the obtained matrix in the real space and multiply it by the nonlinear
term, this is the spectral method [35]. This scheme results in accuracy up to O(δz).
Nonetheless, errors can be reduced up to O(δz3) using the ”leap-frogging” method where
half of the nonlinear step is applied before the linear part, and half after [36].

4.2 Simulation of the ”Soliton vs Multivortex” experiment

Before performing a numerical simulation of the SMV experiment I had to extract the
relevant experimental parameter used during the experiment: the nonlinear index of re-
fraction n2, the beam waist w and power p, and finally the saturation intensity Isat at
which the laser field saturates Rb atoms. These parameters are easily obtained by mea-
suring the evolution of the refractive index variation ∆n with respect to P .
After plugging the measured values in the simulation, I only needed to reproduce the input
field generated by the SLM containing a multivortex and a Jones-Roberts soliton at the
right position and with the right charge ℓ. The simulated field evolved very similarly to
the experimental data proving that the experimental parameters were measured accu-
rately. A comparison between the simulation results and the experiment is represented
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4.2 Simulation of the ”Soliton vs Multivortex” experiment

Figure 9: Mosaic representing in the reading direction the evolution of the density of the
fluid in the SMV experiment (first row) and in the simulation (second row). Each panel
corresponds to a MV charge ℓ ∈ [1, 4, 7, 10].

in fig.9. We see that the final position of the JRS and the MV in the field are relatively
similar, we can explain the small inconsistencies by the imprecision in the measurement
of the experimental parameters. On top of the distinctive singularities, we notice the
presence of additional wavelets whose origin will be explained in the next subsection.
One crucial feature of the simulation is the observation of the JRS breaking into a vortex
pair when the charge of the MV is ℓ = 7. Breaking is clearly observed in the phase of
the simulated field (not shown here). In the ℓ = 6 simulation, the phase does not present
any discontinuities while for ℓ = 7 we observe a 2π winding of the phase at two different
locations. This value of ℓ = 7 is close to the experimental value of ℓ = 6. However, we
need to push the comparison further by calculating the observable of interest: the relative
velocity vr at which breaking occurs. We will execute this task in section 4.2.2.

4.2.1 Time evolution of the field

The advantage of a simulation is that it allows to monitor the evolution of the fluid as it
propagates inside the cell. This is particularly useful for us as we would like to observe
the very instant where the JRS breaks into a dipole. Indeed, if strong hints lead us toward
the hypothesis of a JRS breaking into a vortex pair during the evolution in the nonlinear
medium, it has not been observed in the experiment where we only obtained the field
at the output of the cell.
To this end, we extract the field at different effective times τ (or equivalently different
positions z) in a simulated run where the JRS appears broken after propagation. In fig.10
we plot the density and phase of the field a two different positions z for a run where
the charge of the MV is ℓ = 10. For better visibility in this figure, discontinuities of the
phase are represented by sharp white lines. Panel (a) shows a zoom on the JRS density

19



4.2 Simulation of the ”Soliton vs Multivortex” experiment

Figure 10: Simulation of a Jones-Roberts soliton breaking into a vortex pair. (a) Zoom
on the density and phase of the fluid after z = 7 cm inside the cell. The phase shows
no discontinuity. (b) Density and phase of the fluid after z = 13 cm inside the cell. We
observe two discontinuities in the phase. All images have the same spatial scale.

and phase at z = 7 cm. We notice that the phase does not present any discontinuity at
the location of the JRS. On the other side in panel (b) we observe a discontinuity line
going through the JRS and a 2π winding of the phase at two different locations. This
panel represents the field at z = 14 cm proving that breaking indeed occurs during the
propagation. If we study the intermediate steps between these two positions, we witness
the two singularities appearing extremely close to each other and slowly separating with
time.
Another dynamic that we observe in the simulation is the generation of ripple-like waves
at the surface of the fluid around singularities. These waves appear at the very start of
the run and are damped while they propagate. We can see those ripples in fig.9 where
they seem to be deflected by the massive multivortex and dragged along by its flow My
interpretation is that these ripples are resulting from the quench of interaction at the
entrance of the cell, an effect that has been studied thoroughly in [12]. Indeed, as the
fluid enters the cell it encounters the nonlinear medium straight away without time for
an adiabatic evolution. Structures in the fluid such as vortices thus have to adapt to the
new Hamiltonian and emit sound waves as a consequence. These sound waves can even
be seen in the experimental data in fig.7 and 9 but less distinctly due to noise.

4.2.2 Comparison of the critical velocities

At this point in my work, I have all the tools to compare the results of the SMV experiment
with a tailored simulation. To this mean, I simulate the first two steps of the SMV
experiment as detailed in section 3.3.1. One simulation is done with a JRS and a MV of
charge ℓ = 10, and another with only the MV. In reality, due to the detection algorithm
used to locate the JRS in the field and the limited precision of the split-step method,
the simulated data appears a bit noisy. To counteract this effect we perform multiple
simulations with the same initial conditions and average them out to obtain smoother
data.
To measure adimensional velocities, we extract from the simulated runs without JRS the
speed of sound cs as the field evolves in τ (or equivalently z). The results are given in
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4.2 Simulation of the ”Soliton vs Multivortex” experiment

Figure 11: Results of the simulation of the SMV experiment. (a) Evolution of the speed
of sound cs with the position z inside the cell, (b) evolution of the JRS and background
velocities for increasing z, (c) evolution of the components of vr for increasing z, (d) norm
of vr with respect to z.

fig.11(a) and show a slowly varying value of cs during propagation with deviations smaller
than ±10%. We can then average out the velocity field on a window of 10 px to obtain
the evolution of vjrs and vbg with respect to z. We observe in fig.11(b) that there are two
distinct jumps in the evolution of vjrs at z = 3 cm and z = 12 cm. By observing the
phase of the field we discover that the first jump corresponds to the fusion of the two
vortices used to generate the soliton while the second jump matches with the observation
of a breaking of the soliton into a dipole.
As we did in section 3.3.2 we plot in panel (c) the components of the relative velocity
vr computed using eq.21. We see that the merging and breaking of the dipole coincides
with an inversion of the flow at its center, as observed in the experiment. We finally plot
|vr| in panel (d). This time, we measure a breaking relative velocity of approximately 0.8
cs, slightly more than the experimental value. After the splitting, |vr| goes to 0 as the
vortices follow the background current.
This value is not to be taken as a general answer to the problem either because the flaws
of the SMV experiment detailed in 3.3.2 also affect the simulation (namely the dependence
on the window size, presence of non-trivial flows, and inhomogeneous density of the fluid).
However, the similitude between the experimental and simulated results hints strongly
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towards a theory where JRSs tend to break when their relative velocity approaches the
speed of sound. To prove this theory and give precise values of the breaking velocity,
more experiments and simulations need to be performed on trivial flows and homogeneous
densities. On top of that, using the parameter v̄ from [33] in the measurement could allow
us to get rid of the influence of the window size.

5 Conclusion

Paraxial fluids of light constitute a relatively new and expanding field of modern physics.
Great progress made during the last decades demonstrates the potential of these systems
to simulate fundamental properties of quantum matter. Observation and characterizing
Jones-Roberts solitons opens up new possibilities to study the effects of modern hydro-
dynamical singularities which are difficult or impossible to observe in conventional cold
atoms experiments. Results on the breaking dynamics of Jones-Roberts solitons obtained
during my internship bring us one step closer to understanding effects such as superfluidity,
non-equilibrium dynamics, and turbulence in quantum fluids.

Here we first developed a simplified theory of quantum fluids of light and their sin-
gularities. We then used off-axis interferometry to observe vortices and solitons in fluids
of light and extract the critical breaking velocity. Finally, the dynamics of this break-
ing effect could be evaluated thoroughly through numerical simulation. Both approaches
yielded velocities close to the sound velocity in the fluid hinting at a mechanism where
breaking occurs when the speed of sound is locally exceeded. Additional experiments will
be performed following the submission of this report. The experimental sequence will be
simplified to simpler flows, density inhomogeneities will be taken into account and a new
velocity parameter will be implemented to avoid pitfalls in the data processing. Results
obtained during my internship will be shared via a poster presentation at the Wilhelm and
Else Heraeus Foundation seminar on Advances in Quantum Simulation and Sensing
with Ultracold Gases in Bad Honnef in June 2024.

In parallel to the work presented in this report, I also took part in the conception of
a brand new cold atoms experiment as part of the MistiQ-Light European project.
It will allow the generation, observation, and manipulation of fluids of light inside a cold
atomic cloud of Rb atoms. My work on this project is to design and build the experimental
apparatus as well as to find the optimal parameters for the study of fluids of light. This
platform will hopefully allow us to tailor the potential in which the fluid of light evolves and
thus observe a quantum phase transition from a superfluid state to a Mott insulator
of photons.
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