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Abstract

Quantum fluids of light emerged recently as a way to study quantum many-body phenom-
ena. Through a mapping between the equations governing 2D quantum fluids, notably
the Gross-Pitaevskii Equation, and the Non-Linear Schrödinger Equation governing the
propagation of light in Kerr media, we can draw parallels between the two systems. In
our case, we specifically study the propagation of light through a hot rubidium vapor cell.
In such a paraxial fluid of light, the propagation direction plays the role of an effective
time. In this thesis, after exploring this mapping, we study the dynamics of vortices
which are common to both systems. Such dynamics include splitting, spontaneous and
stimulated emission of waves. Going from a linear medium (air) to a non-linear medium
(hot atomic vapor) through the cell interface suddenly increases interactions, thus driv-
ing the system out of equilibrium. This creates perturbations that we can observe in the
fluid, known as quenches. As we would be interested to study vortex dynamics in the
equilibrium case, and since we believe quenches might affect vortex dynamics, we explore
two possible ideas to eliminate these perturbations: ramping interactions adiabatically or
injecting ”antiquenches”. We also test some of the numerical tools developed by a study
of superradiance.
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1 Introduction

With the emergence of the field of many body quantum physics, a lot of effort has
been put to study collections of quantum particles over the past decades. One of the
most fundamental predictions was that bosonic particles would condense if they were
cooled below a critical temperature. Cooling techniques, developped by Claude Cohen-
Tannoudji, Steven Chu and William D. Phillips paved the way for experiments in this
field and granted them the Nobel prize in 1997 [1, 2, 3]. These discoveries allowed the
observation of the theorized Bose-Einstein condensates (BEC) in 1995 by the NIST-JILA
lab [4, 5]. This phenomenon has also been tightly associated with superfluidity. As the
atoms condense, they behave collectively. They are thus governed by the evolution of one
wavefunction, described by the Gross-Pitaevskii Equation (GPE) [6, 7].

The GPE is an instance of the Non-Linear Schrödinger Equation (NLSE), which is
a non-linear differential equation relevant to multiple fields of physics. In the context
of non-linear optics, the NLSE describes the evolution of electric field envelopes in a
medium with χ(3) non-linearity. Thus, from a mathematical perspective, the NLSE and
the GPE are basically the same. This leads to the field of Quantum Fluids of Light.
A lot of analogies can be drawn between BEC physics and non-linear optics. Because this
correspondence, one can be used to study the other. In practice, it becomes a question of
which system is easier to study. The advantage of Quantum fluids of light is that optics,
being an older, well-studied field, offers a wide platform for ideas to test. Quantum fluids
of light can be studied in different systems, such as in confined geometries for example.
However, in this thesis, we work with simpler cavityless paraxial systems using hot atomic
vapor cells (specifically, Rubidium vapors).

The work in this thesis is mainly focused on studying numerically vortex dynamics and
quenches in these systems.
In Section 2, the theoretical foundations necessary to understand the analogy between
the GPE and the NLSE is provided. Bogoliubov theory is introduced. The numerical
framework for the NLSE solver is also described.
In Section 3, the concept of vortices is explained. Some of their dynamics such as split-
ting are also explored.
In Section 4, interaction quenches are described. To study vortex dynamics rigorously,
eliminating quenches is interesting. Possible methods to achieve this are hence intro-
duced.
In Appendix A, superradiance, whose outcomes are known, is also used as a means to
test the developed numerical tools.

A lot of numerical tools have been developed during this thesis. These can be found on:
https:\ to add when github is cleaned
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2 Quantum Fluids of Light

In this Section, we will focus on describing the theoretical background needed to under-
stand the mapping between the GPE and the NLSE. The numerical method used to solve
the latter will be described. Bogoliubov theory will also be briefly introduced. We will
follow similar derivation steps as Tangui Aladjidi’s PhD Thesis and its references [8] as
well as the review in Ref.[9].

2.1 Light Propagation in a Non-linear Medium

For our purposes, to describe the evolution of the electric field envelope in a Kerr medium,
it is enough to start using a classical approach. Using Maxwell’s equations, it can be
shown that the propagation of an electric field E in a medium with electronic polarization
P follows Helmholtz’s equation [10]:

∇2E− 1

c2
∂2E

∂t2
=

1

ϵ0c2
∂2P

∂t2
, (1)

where c is the speed of light in vacuum and ϵ0 is the electric permittivity of vacuum.

In linear optics, it is enough to write P = ϵ0χE. However, if we assume a nonlinear,
isotropic, centrosymmetric, and local medium, we can expand the polarization P into
higher-order terms of the electric field E, neglect all even-order terms, assume that P is
aligned along the direction of E, and consider that the polarization at any given position
depends only on the electric field at that same position. It is important to note that the
hot atomic vapors used in our case satisfy all these assumptions except locality, which we
introduce initially for simplicity. The polarization P, which can now be described solely
by its amplitude since it is aligned with E, can therefore be expressed in the frequency
domain. In the frequency degenerate case (where only one frequency is involved) we have:

P (r, ω) = ϵ0
(
χ(1)(r, ω)E(r, ω) + 3χ(3)(r, ω)|E(r, ω)|2E(r, ω)

)
. (2)

Now, we assume that we have a monochromatic field, that we can achieve for example
by using a continuous wave (CW) laser (we will see shortly the implications of this
assumption for the geometry of the system):

E(r, t) =
1

2

(
E ′(r, ω)eiωt + E ′∗(r, ω)e−iωt

)
, (3)

Injecting Eq. 2 and Eq. 3 in Eq. 1, expanding, and ignoring terms oscillating at high
frequencies (3ω) that average out over the time scales of interest, we get:

∇2E ′(r, ω) +
ω2

c2
[1 + χ(1)(ω)]E ′(r, ω) = −3

4

ω2

c2
χ(3)(ω)|E ′(r, ω)|2E ′(r, ω). (4)

If we decompose the refractive index in a linear part n and a non-linear part ∆n = 2n̄2|E|2,
we can write

(n+∆n)2 = 1 + χ(1) + 3χ(3)(ω)|E|2, (5)

we get by expanding, comparing the coefficients in |E|2, and ignoring terms higher than
first order

n =
√

1 + χ(1) := n0, n̄2 =
3χ(3)

4n0

. (6)
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We can also include a small local variation δn(r) of the index of refraction so it becomes

n =
√

1 + χ(1) = n0 + δn(r). (7)

For experimental purposes and since it is easier to measure intensities I = 1
2
ε0n0c|E|2

instead of |E|2, it is convenient to redefine ∆n = n2I, for n2 = 2
ε0c
n̄2. We note that in

our system, we will only work with n2 negative, known as the self defocusing case. More
explicitly, suppose we are working with a Gaussian beam. The intensity of such a beam
is higher at its center than at the edges, hence, it will experience lower refractive index
at its edges, and it will self defocus.

Now, if we define the medium wavenumber as k := ω
c
Re(
√

1 + χ(1)) and the absorption

coefficient α := 2k ω
c
Im(
√

1 + χ(1)), Eq. 4 becomes, assuming small losses (so we can
ignore the α2 term):

∇2E ′ + k2E ′ + iαE ′ = −3

4

ω2

c2
χ(3)|E ′|2E ′. (8)

Up to this point, the propagation equation (Eq. 8) still involves, through the Laplacian
operator, 3 dimensions of space. This is where the slowly-varying envelope approximation
and paraxial approximation play a big role in paraxial fluids of light. We will see how
these approximations will reduce the system into a 2D+1 geometry, with the propagation
direction acting as an effective time.

For this thesis, we will pick the z direction as the propagation direction. We will also use
the symbol ⊥ for the transverse (x, y) plane. The approximations stated above write as:

• slowly-varying envelope approximation: E ′(r) = E(r⊥, z)eik0z, for k0 = n0ω/c, the
envelope varies slowly along z compared to λ = 2π/k0 hence decoupling tranverse
from longitudinal dynamics;

• paraxial approximation:
∇2

⊥E
k20

∼ ∂zE
k0

≪ 1, the beam deviates barely from the optical

axis.

With these approximations, it is straightfoward to see that the Laplacian term becomes

∇2E ′ =

(
∇2

⊥E − k20E + 2ik0
∂E
∂z

)
eik0z. (9)

Injecting Eq. 9 in 8 and using all the definition above, we can get the final NLSE. Notic-
ing that k = k0+ δk(r), we get the following equation describing the evolution in z, using
a reduced 2D Laplacian:
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Non-Linear Schrödinger Equation (NLSE)

i
∂E
∂z

=

(
− 1

2k0
∇2

⊥ − i
α

2
− k0

δn(r)

n0

− k0n2|E|2
)
E . (10)

At some point in the derivation, we assumed that we work with a CW laser with a
negligible spectral extent. The electric field would thus basically be a plane wave in the
z direction. We therefore get translational invariance reducing the system to a 2D+1
geometry. On the other hand, to get a 2D+1 quantum fluid, we only need physical
confinement along the z direction and real-time would still act as the effective time. We
note that if we chose to work with pulsed/non-monochromatic light, dispersion would
have modified the 2D+1 geometry as we would need to introduce extra terms, involving
real-time derivatives, to take it into account (see Chap. 1 of Ref. [8] for more details).
As mentioned earlier, the NLSE governing our optical system is very similar to the GPE
governing weakly interacting Bose gases, defined as follows:

Gross-Pitaevskii Equation (GPE) in 2D

iℏ
∂ψ

∂t
=

(
−ℏ2

2m
∇2

⊥ + iγ + V (r) + g|ψ|2
)
ψ, (11)

where g = 4πℏ2as
m

, with as the s-wave scattering length, V (r) a potential energy term (e.g.
trapping potential), and γ is a loss term. Our goal is to now draw the parallelisms between
the two equations. Identifying term by term, we get the following correspondences.

• Diffraction − 1
2k0

∇2
⊥ ↔ − ℏ2

2m
∇2

⊥ Kinetic Energy.

The photons acquire an an effective mass m̄ = ℏk0
c
.

• Absorption −iα
2
↔ iγ Losses.

• Refractive Index Spatial Modulation k0
δn(r)
n0

↔ V (r) Potential Energy.

An effective potential is defined as V̄ = −ℏck0δn(r)
n0

.

• Non-Linear Refractive Index k0n̄2|E|2 ↔ g|ψ|2 Interaction Energy.
χ(3) nonlinearity mediates an effective interaction between photons ḡ = −ℏck0n̄2.

The 2D dynamics of the electric field envelope propagating along z in a Kerr medium can
be comparable to those of the many-body wavefunction in real-time t. We can thus say
that the propagation direction z acts as an effective time τ = z

c
. Fixing z is equivalent

to fixing time.

Figure 1: In a paraxial fluid of light, the electric field envelope of light traveling in a Kerr medium follows
the NLSE which is analogous to the GPE, with the propagation direction z acting as an effective time
τ = z/c. Taking transverse snapshots at specific z and superposing them would form a video of the
evolution of a quantum fluid. Image adapted from Ref. [11].
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2.2 Numerical analysis using a NLSE Solver

To solve numerically the NLSE, ex-PhD student Tangui Aladjidi and PhD student Clara
Piekarski developed a python package 1 detailed in Ref. [8, 12].

The package uses a split-step spectral scheme to solve NLSE efficiently. We will see that
this method is matricial by essence and thus works best when working on GPU.
The first step is to, as done in most numerical partial differential equations solvers, dis-
cretize space and (effective) time. The electric field thus becomes a pixelized 2D array
Ei,j = E(xi, yj), where the distance between xi+1 and xi, yi+1 and yi is fixed by the
number of pixels N and the cell window size w we choose; we get a pizel size p = w/N .
The simulation is also done at steps δz. The simulation precision increases when the
discretization is smaller, at the expense of higher simulation time. For most applications,
N = 2048, w = 20× 10−3m, p = 9.7× 10−6m and δz = 10−4m give a good compromise
between accurate simulations and reasonable simulation times (of the order of a minute
at maximum on the group’s GPU Hawking). These parameters will be the default ones
for this thesis except stated otherwise. Depending on the need, we will also crop or not
a part of the array and keep areas of interest.

In fact, the operators involved in the NLSE 10 can be split as follows:

∂E
∂z

=

− 1

2k0
∇2

⊥︸ ︷︷ ︸
D

− i
α

2
+ k0δn+ k0n̄2|E|2︸ ︷︷ ︸

N

 E . (12)

We thus define a linear D operator whose application is easy to solve in Fourier space
(due to the Laplacian) and a non-linear N operator whose application is easy to solve in
real space.
Effective time propagation for small steps hence gives

E(z + δz) = E(z)eiδz(D[E(z)]+N [E(z)]). (13)

Since we are dealing with operators, to exploit the usual properties of the exponential
(such as decomposing a sum in the exponent into a product of exponentials), the oper-
ators should commute, which is not straightforward here. The trick is thus to use the
Baker–Campbell–Hausdorff formula after noticing that we are propagating at small steps
δz to get

E(z + δz) ≈ E(z)eiδzD[E(z)]eiδzN [E(z)]. (14)

Knowing this, the algorithm becomes straightforward and requires going back and forth
between Fourier and real space: 1) Fourier transform, 2) apply the linear propagator
operator term, 3) inverse Fourier transform, 4) apply the non-linear operator propagator
term and 5) loop over.
In practice, we can for example get for any integer multiple of δz, 2D arrays of the electric
field of any input that we can define analytically. Experimentally this is achieved using
a Spatial Light Modulator (SLM) and a camera at the end of the cell. We can then use
this to analyze intensity, phase, and any quantity related to the electric field as seen in
Fig. 2. We note that for an electric field at position xm, yn, with phase ϕm,n and of the
form Em,n = Am,ne

iϕm,n , we define for simplicity the intensity, in a.u. as |Em,n|2.
1The documentation can be found on https://quantum-optics-lkb.github.io/NLSE/
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Except stated otherwise, we will show images where each pixel corresponds to a coefficient;
the ticks on the axes will thus label the pixel number.

0 200 400

0

100

200

300

400

500

Intensity at z=10 cm

0 200 400

0

100

200

300

400

500

Phase at z=10 cm

0.000

3.777

7.553

In
te

ns
ity

1e7

0.5

0

0.5

Ph
as

e

Figure 2: Intensity and Phase diagrams at z = 10cm for a Gaussian input field ψ0 = e−(x2+y2)/w2
0 with

waist w0 = 1.7× 10−3m. The axes are labeled by pixel number, with pixel size p = w
N = 9.7× 10−6m.

2.2.1 Numerical Tool: Absorbing Boundary Conditions

To efficiently Fourier transform on a classical computer, the Fast Fourier Transform
(FFT) is the most known efficient algorithm. It is used in the NLSE package. However,
the FFT assumes that the input is periodic over the computational domain. In our
case, the physical problem does not always exhibit periodicity. Therefore, the FFT
enforces an artificial periodic extension. This can lead to discontinuities at the edges
of the simulation domain, where the actual field values abruptly transition from the
physical domain to the artificially repeated values. Such discontinuities introduce high-
frequency components when transformed into the frequency domain, which then appear
as non-physical reflections in the spatial domain. Essentially, when a wave approaches
a boundary under these conditions, it interacts with its mirrored counterpart due to the
periodic extension, resulting in an artificial reflection that contaminates the simulation
results. This effect becomes highly significant when the window size approaches the beam
waist size as can be seen in Fig. 3.
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Figure 3: Intensity and phase diagrams at z = 10cm for a gaussian background ψ0 multiplied by an input
vortex field ψv(r, θ) =

r√
r2+( ξ

0.83 )
2
eiℓθ of charge l = 3 and healing length ξ = 17× 10−6m (see Section 3

for more details). (a) Simulation for the classical NLSE code with window w = 2w0. (b) Simulation for
the modified NLSE cose using the Absorbing Boundary Conditions method with an absorption width of
0.3w. For both figures, the background intensity and phase are subtracted, hence explaining the negative
intensities.

To solve this issue, two main possible solutions exist. The first and more complex one is
known as the Perfectly Matched Layers (PML) method. However, the one that we use
is the absorbing boundary conditions method. We implement it by first initializing all
matrix coefficients to 1. Then, we define an absorption width W defined by its distance
from the boundary. The pixels, from the four sides, go from 1 to 0 at the boundary
following a specific parametrization (in that case we defined it for the x direction and for
an absorption widthW as cos2((x−N−W ) π

2W
) It is defined similarly for y. The obtained

matrix is later multiplied by the normalized electric field to define a new normalized
electric field matrix decaying to 0 on the boundaries. Fig. 3 already shows improvements
in terms of reflections for an extreme case of small window. Fine tuning the absorption
width can yield better results.
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2.3 Hydrodynamic Formulation

Since many of the dynamics we study in a quantum fluids of light system are common to
fluid mechanics, it is useful to adopt a hydrodynamic formulation. Using the Madelung
transform [13], we redefine the electric field envelope as

E(r⊥, z) =
√
ρ(r⊥, z)e

iΦ(r⊥,z). (15)

The velocity of the fluid would thus be defined as

v =
c

k0
∇ϕ =

ℏ
m̄
∇ϕ. (16)

Plugging Eq. 15 in Eq. 10, we get a quantum version of Euler equations:

∂ρ

∂z
+

1

c
∇⊥.(ρv) = −αρ

∂v

∂z
+

1

2c
∇⊥v

2 +
c

k0
∇⊥

(
ḡρ+ V̄ − 1

2k0

∇2√ρ
√
ρ

)
= 0.

(17)

The last term is known as the quantum pressure term and is not present in the classical
formulation of Euler equations.

2.4 Bogoliubov Theory

In Subsection 2.2, we already explored a way to solve the NLSE numerically. The NLSE
(or equivalently GPE) can however not be solved trivially without approximations and
initial guesses. This is where Bogoliubov theory comes into play. Without detailing all
the calculations, we will show the steps to retrieve theBogoliubov dispersion relation.
We will now switch to a quantum treatment. In fact, it can rigorously be shown (consult
Ref. [14, 15]) that the quantum formulation of NLSE yields the same equation, but now
with field operators.

i
∂Ê
∂z

= − 1

2k0
∇2

⊥Ê − i
α

2
Ê + V̄ (r, z)Ê + ḡ(r, z)Ê†Ê Ê . (18)

The first step is to consider a perturbative approach where we consider small quantum
fluctuations δ̂E on top of a classical mean field E0 as:

Ê = E0 + δÊ . (19)

Injecting Eq. 19 in Eq. 18, then ignoring high order terms in the perturbation, we get:

i
∂δÊ
∂z

= − 1

2k0
∇2

⊥δÊ + ḡ(r, z)
[
2|E0|2δÊ + E2

0 δÊ†
]
− iαδÊ . (20)

Noticing that the fluctuation operators can be expressed as

δÊ(r⊥, z) =
∫

dk⊥âk⊥(z)e
ik⊥·r⊥

δÊ†(r⊥, z) =

∫
dk⊥â

†
−k⊥

(z)eik⊥·r⊥
(21)
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we get the following system

i∂z

(
âk⊥

â†−k⊥

)
=

(
− k2

⊥
2k0

+ 2ḡ|E0|2 − iα
2

ḡE2
0

ḡE∗2
0 − k2

⊥
2k0

+ 2ḡ|E0|2 − iα
2

)(
âk⊥

â†−k⊥

)
. (22)

We rewrite these coupled equations

i∂z

(
âk⊥

â†−k⊥

)
=

(
A− iα

2
B

B∗ A− iα
2

)(
âk⊥

â†−k⊥

)
, (23)

with

A := −k⊥
2

2k0
+ 2ḡ|E0|2, B := ḡE2

0 . (24)

We introduce new operators defined, for a normalization that we choose to satisfy
u2k⊥

− v2k⊥
= 1, by the system(

âk⊥(z)

â†−k⊥
(z)

)
=

(
uk⊥(z) vk⊥(z)
vk⊥(z) uk⊥(z)

)(
b̂k⊥(z)

b̂†−k⊥
(z)

)
(
b̂k⊥(z)

b̂†−k⊥
(z)

)
=

(
uk⊥(z) vk⊥(z)
vk⊥(z) uk⊥(z)

)−1(
âk⊥(z)

â†−k⊥
(z)

) (25)

designed to evolve following the equations below (we want to find new operators that are
eigenmodes of the evolution):

∂b̂k⊥

∂z
= iΩB(k⊥, z)b̂k⊥

∂b̂†−k⊥

∂z
= −iΩ∗

B(k⊥, z)b̂
†
−k⊥

(26)

(where ΩB is a constant) called the Bogoliubov frequency. From the original system, we
have

i∂zâk⊥ =
(
A− iα

2

)
âk⊥ +Bâ†−k⊥

,

i∂zâ
†
−k⊥

= B∗âk⊥ +
(
A− iα

2

)
â†−k⊥

.
(27)

Taking the z-derivative of b̂k⊥ and using the above equations yields:

i∂z b̂k⊥ = i∂z
(
uk⊥ âk⊥ − vk⊥ â

†
−k⊥

)
= uk⊥

[(
A− iα

2

)
âk⊥ +Bâ†−k⊥

]
− vk⊥

[
B∗âk⊥ +

(
A− iα

2

)
â†−k⊥

]
=
[
uk⊥

(
A− iα

2

)
− vk⊥B

∗
]
âk⊥ +

[
uk⊥B − vk⊥

(
A− iα

2

)]
â†−k⊥

.

(28)

We require this to be equal to ΩB b̂k⊥ = ΩB

(
uk⊥ âk⊥−vk⊥ â

†
−k⊥

)
. Comparing and matching

coefficients leads to the systemΩBuk⊥ = uk⊥

(
A− iα

2

)
− vk⊥B

∗,

ΩBvk⊥ = −uk⊥B + vk⊥

(
A− iα

2

)
.

(29)
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In matrix form: (
A− iα

2
− ΩB −B∗

B −A+ iα
2
+ ΩB

)(
uk⊥

vk⊥

)
=

(
0

0

)
. (30)

To get consistent, non-trivial solutions for this homogeneous system, the determinant of
the matrix above should vanish yielding:

ΩB(k⊥) = ±

√
k⊥

2

2k0

(k⊥
2

2k0
+ 2ḡ|E0|2

)
− i

α

2
. (31)

This is the Bogoliubov dispersion. Now that we have found the eigenmodes of our
evolution, we can think about the physics underlying this dispersion.
We identify two interesting regimes. Using Taylor expansions for the approximations:

• k⊥ ≪ k0
√
∆n, we get a linear dispersion ΩB(k⊥) ≈ k⊥

√
∆n := csk⊥. Similarly to

the dispersion of sound waves, this is a sonic regime, which enables us to define a
speed of sound cs =

√
∆n =

√
n2ρ.

• for k⊥ ≫ k0
√
∆n, we get a quadratic dispersion characteristic or particle-like sys-

tems ΩB(k⊥) ≈
k2⊥
2k0

.

As Eq. 20 is linear, the analysis above allows us to say that the perturbations can be
written as a (discrete or continuous) superposition of modes of the form:

uk⊥e
ik⊥.r⊥e−iΩB(k⊥)z − vk⊥e

−ik⊥.r⊥eiΩB(k⊥)z. (32)

For some systems, it might be interesting to work in spherical coordinates (r, ϕ, θ).
In fact, it can be shown 2 that we can expand a plane wave, for Bessel functions jℓ and
Yℓm the spherical harmonics as:

eik⊥.r⊥ =
∞∑
ℓ=0

ℓ∑
m=−ℓ

cℓm(k⊥)jℓ(k⊥.r⊥)Yℓm(π/2, θ). (33)

Because of symmetries of some problems, such as when a vortex exists (see Section 3), it
would thus be interesting to work in polar coordinates and look at modes that we label
by eimθ (due to the spherical harmonics). We note that we chose ϕ = π/2 as we work in
the transverse plane.

2As done in Lecture notes https://scipp.ucsc.edu/~haber/ph215/PlaneWaveExpansion.pdf. We
note that in the Lecture notes, the polar coordinates are defined as (r, θ, ϕ) instead of (r, ϕ, θ) like in our
case (we chose this convention for consistency with the following sections).

10
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Figure 4: Theoretical Bogoliubov dispersion. When the non-linear interactions related to ∆n are strong,
we have a sonic regime (shaded in Orange). In the opposite case, we have particle-like dispersion (shaded
in Green). Image adapted from Ref. [8].

The analysis and the Fig. 4 above also suggest that in strongly interacting regimes,
perturbations should in principle propagate at the speed of sound. This will be given a
particular interest in Section 4.
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3 Vortices

In this Section, we will focus on the study of vortices. After defining them and exploring
some of their properties, we will see how even with the simplest configurations possible
(one single or multi-charged vortex), we get complex and interesting stimulated and
spontaneous dynamics.

3.1 Definition and Properties

A vortex is defined as topological defect around which the fluid circulates due to a twist-
ing in its phase. At the core of this vortex, the fluid density vanishes to account for a
phase singularity. A simple classical analogy is water spiraling down a drain. However,
unlike the continuous flow seen in classical fluids, quantum vortices occur in quantized
steps. Vortex dynamics play a big role in multiple fields of physics from superconductor
physics, topological matter, BECs, high-energy physics, etc. Many interesting phenom-
ena can occur when considering multiple vortices at the same time, notably, they can
combine with other vortices, forming for example Jones-Roberts solitons [16], rearrange
themselves into a lattice [17], drive turbulent dynamics [18], etc. However, in this thesis,
we will focus on the study of one single or multi-charged vortex at most.

In this Subsection, we will follow similar steps as in Chap. 9 of the 2nd edition of the
book ”Bose–Einstein Condensation in Dilute Gases” by C. J. Pethick and H. Smith [19].
For the sake of consistency with the book, we will use the notation of BECs using the ef-
fective quantities defined in the correspondences made in Subsection 2.1. We also choose
to work in polar coordinates.

Using the hydrodynamic formulation, we can define the velocity of the fluid as:

v =
ℏ
m̄
∇ϕ. (34)

Unless the phase showcases a singularity (which is the case for a vortex field), the velocity
is irrotational with ∇× v = 0.
If we assume that we have a field with single-values, the change in its phase would be an
integer multiple of 2π around a closed contour:

∆ϕ =

∮
∇ϕ · dl = 2πℓ,where ℓ ∈ Z. (35)

This condition also means that the electric field should vary as eiℓθ. This gives us a
circulation quantized in units of h

m̄
:

Γ =

∮
v · dl = ℏ

m̄
2πℓ = ℓ

h

m̄
. (36)

This implies that for a distance r from the center, the azimuthal velocity is

vθ = ℓ
ℏ
m̄r

. (37)

If ℓ ̸= 0, the field must vanish when r → 0. Otherwise, the kinetic energy due to this
velocity would diverge. This structure will in fact define a vortex. As long as we have a
field varying as eiℓθ, its phase will wind from 0 to 2π |ℓ| times. The vanishing intensity
accounts for the undefined phase in the center. We call such a structure a vortex of charge
ℓ. We define a single charge vortex for |ℓ| = 1 and a multi-charge vortex for |ℓ| > 1.

12



In this thesis we will always define the vortex field by ψv(r, θ) = r√
r2+( ξ

0.83
)2
eiℓθ [19].

We can see in Fig. 5 characteristics of such a vortex. It is also worth to mention that
the healing length is the characteristic distance over which the fluid’s order parameter
recovers from the density going to zero at the core of a vortex. It sets the size of the
vortex core. Except stated otherwise, we will use vortices of size ξ = 17× 10−6m.

Figure 5: Intensity and phase of a single charge vortex. The intensity at the core of the vortex is null and
recovers after the healing length which covers almost 2 pixels of size p = 9.7×10−6m, ξ = 17×10−6m ≈ 2p
as expected. The phase winds from 0 to 2π once (ℓ = 1).

In fact, as done in Ref. [19], it can be shown that a configuration with a multi-charge
vortex of charge n is more energetic than a configuration with n single-charge vortices.
This means that a multi-charge vortex would tend to dissipate its energy and split into
multiple single-charge vortices. This effect will be of particular interest in the following
Subsections.

3.2 Numerical Tool: Decomposition into Bogoliubov Modes in
Spherical Coordinates

As we will detail in the following subsections, looking into vortex dynamics might involve
looking into Bogoliubov modes. We are for example interested to see which modes might
be emitted in the dissipation of energy when a multi-charged vortex splits. For this
reason, a tool based on the NLSE Solver to decompose into these modes is necessary.
We have seen that a vortex field goes as eiℓθ. If we are also interested to look into
modes labeled by their orbital angular momentum (OAM), it is interesting to work in the
spherical (r, ϕ = π/2, θ) basis3 if we define the origin at the center of the plane of interest.
We have also seen that after running the NLSE Solver (see Subsection 2.2), we can get
2D array for fixed positions z (in practice, we store this in 3D arrays where the third
dimension corresponds to the z positions of interest). These arrays are however given in
cartesian coordinates. For this reason, in order to look into the eimθ modes, labeled by
m we need to use the following algorithm:

3Looking at Fig. 1, if we define a spherical coordinates system for a fixed plane with azimuthal angle
θ and polar angle ϕ, we would always be at ϕ = π/2. For convenience, from now on, we will drop the
π/2 from the notation.
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• Project the array from the cartesian (x, y) basis onto the polar r, θ basis. We now
get a 2D array where the columns are given by θ and the rows by r.4

• Perform a 1D Fourier transform along θ. We now get a 2D array where the columns
are given by m (conjugate variable to θ) and the rows by r.5

• Look at the wanted observables. The most useful observable in such cases where
we need to know which modes are favored is usually the intensity

Given this method, we can then get plots such as the one represented in Fig 6. As see in
the figure, if we inject at the input vortices of charge ℓ, we expect to see a high intensity
in the mode labeled by m = ℓ, due to the structure of a vortex.

Figure 6: Intensity decomposition into spherical Bogoliubov modes for an input field ψ ∝ 0.9ψv+0.1eiky,
with the vortex being chosen of charge l = 3 and k = 8.43m−1. Such a plot can be used for a spectral
analysis, useful in cases such as the study of superradiance.

In Appendix A, we show how this decomposition can be used for the study of superradi-
ance (which justifies the choice of the input ψ ∝ 0.9ψv + 0.1eiky) for example.

4It is important to know that as we are working with pixelized arrays, projecting into polar coordinates
is not direct. For example, in cartesian coordinates, we can define the intensity as

∫
I(x, y)dxdy. In the

polar case, we need to look, in a.u. at
∫
I(r)rdr. The method, inspired from https://stackoverflow.

com/questions/3798333/image-information-along-a-polar-coordinate-system allows in fact to
retrieve the r grid and thus, after squaring the electric field amplitude, we can just multiply by the r grid
values and sum over the axis to get the total intensity in one mode. We also note that we are working
in a discrete case so any integral transforms into a sum.

5In practice, numerical methods for a Fourier transform such as numpy.fft or cupy.fft give the positive
frequencies then the positive ones. For better visualization, in the actual implementation we switch
blocks of the array to get the mode for m = 0 at the center.

14

https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system
https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system


3.3 Stimulated and Spontaneous Dynamics

Vortices can be driven to behave following certain dynamics, we call such cases stimu-
lated dynamics. An example of stimulated dynamics would be sending a perturbation
(e.g eiky, eimθ, etc.) that interacts with a vortex. These waves, scattering off the vortex
can possibly extract energy from it and be amplified. In this energy extraction process,
a multi-charge vortex can split to dissipate its energy. For a single charge vortex, it is
still not clear theoretically how energy dissipates, but we will see shortly that we can still
observe what we believe is an amplification (for a full rigorous study, quenches, which
also are perturbations in the form of Bogoliubov modes should be eliminated as they
could possibly be mistaken for amplification). Superradiance (see Appendix A) can be
thought of as a stimulated process.

We can also have spontaneous dynamics occuring, especially with quantum noise. In
the NLSE package, quantum noise could be possibly modeled classically using the method
explained in Ref. [20]. For now, if needed, we just add random Gaussian noise.
Considering all of the above, it is interesting to study at which levels and frequencies
of noise (quantum or classical), and at which rate (e.g. at which z do we see vortices
splitting), can these dynamics happen.

A relevant analogy can be made with stimulated and spontaneous emission for atoms
where spontaneous emission is driven by vacuum fluctuations whereas stimulated emis-
sion depends on the field we send.
To study stimulated processes, sending a plane wave perturbation is a good starting point
as it can be decomposed into a superposition of many Bogoliubov modes.

(a) (b)

(c) (d)

Figure 7: (a)-(b) Stimulated dynamics at z = 0.1cm. We send an input vortex field with a perturbation
on top of the background of the form ψ ∝ 0.9ψv +0.1eiky, k = 100m−1. (c)-(d) Spontaneous Dynamics
at z = 0.1cm with ψ = ψv. For the left hand side simulations, gaussian random noise is added with an
amplitude of 1% compared to the input field. (b)-(d) No Gaussian noise is added. For all simulations,
the vortices are of charge ℓ = 2 and healing length ξ = 17× 10−6m−1. The background intensity is also
subtracted in all simulations.
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In the following analysis, we will consider vortices to have split in the case where there
is at least two pixels of separation in the phase.
We see from Fig. 7 that indeed, looking at the phase, when we send a perturbation, the
vortices split rapidly (at least at z = 0.1cm only). However, if we wait for spontaneous
dynamics in the current model that we implement, it is difficult to observe with certainty
the splitting of vortices even at z = 15cm (see Fig. 8).

(a) (b)

Figure 8: (a) Stimulated dynamics at z = 15cm. We send an input vortex field with a perturbation on
top of the background of the form ψ ∝ 0.9ψv + 0.1eiky, k = 100m−1. (b) Spontaneous Dynamics at
z = 15cm with ψ = ψv. For the left hand side simulations. For all simulations, no Gaussian noise is
added, the vortices are of charge ℓ = 2 and healing length ξ = 17× 10−6m−1. The background intensity
is also subtracted.

But if we wait long enough, we can see at z = 65cm (which is difficult to realize experi-
mentally for usual cells of size 20cm at maximum.), the splitting, even without Gaussian
noise, just from spontaneous dynamics becomes clear. In fact, we can even start seeing
it (less obviously) starting around 30cm. This hints that at least theoretically, and using
the model we have, we could possibly have spontaneous splitting of vortices.

(a) (b)

Figure 9: Spontaneous splitting of vortices at z = 30cm (a) and z = 65cm (b) with no noise or
perturbation added. The parameters chosen are such that we chose an initial vortex with ξ = 17× 10−6,
ℓ = 2. The simulation is done using N = 4200 pixels initially, that we crop to the center. Background
intensity and phase is subtracted.

To get images as in Fig. 7, 8, or 9, increasing the number of pixels is necessary to be
able to determine, looking at the phase, if the vortices split or not. However, this comes
at the expense of computational time. In the figures above, we use at least 4200 pixels
for the default window and then we zoom. An alternative approach, where the absorbing
boundary conditions method might come into play would be to take a smaller window
with less pixels (or take a smaller window). An interesting implementation for the future
would be to automatize the code to see if vortices split or not, by looking at the phase.
This would allow an enhanced study where we can rapidly test the change of many
parameters such as effective propagation time z, charge ℓ, healing length ξ, perturbation
amplitude, perturbation frequency k and noise amplitude.
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We will now focus mainly on stimulated dynamics. As explained earlier, waves scattering
off a vortex can be amplified by extracting energy from the vortex. This phenomenon
seems to happen for all the range of plane wave frequencies and vortex charges that were
tried (over more than 5 orders of magnitude for the frequencies starting from k = 1m−1).
As we will see in Section 4, inputting a vortex on top of the background alone creates
perturbations due to quenching (see left hand side of Fig.10). It is not always easy to
know what comes from quenching and what comes from an amplification. Nevertheless,
quenches have a characteristic rings-like shape. When we add a plane wave perturbation
traveling along the y direction for a vortex of ℓ = 1 or ℓ = 6, we can see in both cases
that an amplification zone can be observed.

(a) (b)

(c) (d)

Figure 10: (a)-(c) Effect of injecting a vortex on top of the background with no noise or perturbation.
Ring-like waves form due to quenching. (b)-(d) When a perturbation in the form of a plane wave with
k = 100000m−1 is added, its scattering off the vortex leads to an amplification. Vortices of charge ℓ = 1
(a)-(b), ℓ = 6 (c)-(d) with the standard healing length were used. Background intensity and phase is
subtracted.

We usually always have amplification zones, however, their direction and number seems
to depend on the frequency of the plane wave injected as well as the initial vortex charge.
As can be observed in Fig. 11, when a lower spatial frequency is used, the vortices, after
splitting, reorganize in a specific way (which might be the most energetically favorable
6) and then each vortex will create its own amplification zone. The more we propagate
in effective time, the more the dark areas advance.

6An interesting phenomenon to study in such cases would be the movement of vortices. It could be
possible that after this rearrangement, they stay stable.
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(a)

(b)

Figure 11: More examples of stimulated dynamics using plane waves of k = 10m−1 (a) and k = 100m−1

(b) and vortices of charges ℓ = 3 (a) and ℓ = 6 (b). Background intensity and phase is subtracted.

Now that we have explored dynamics with plane wave perturbations, that we recall can
be written as a superposition of the eimθ modes7, it is interesting to see how vortices
interact if we inject such a mode only. Now, we define the input field on top of the
background, as ψ ∝ 0.9ψv + 0.1eimθ, with ψv = f(r)eiℓθ.

(a) (b)

(c) (d)

Figure 12: Input field on top of the background of the form ψ ∝ 0.9ψv + 0.1eimθ. A pattern of |m − l|
amplification zones emerges. Background intensity and phase is subtracted.

7We will also sometimes call such modes m modes.
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Using this perturbation, we see the emergence of |m − l| zones of amplification. In the
phase, we also observe |m− l| points, other than the vortices, where the phase wraps from
0 to 2π. In the figure above, we tried perturbing with positive m modes only, however,
this is equally possible with the use of m < 0 (see Fig. 13).

Figure 13: Input field on top of the background of the form ψ ∝ 0.9ψv +0.1eimθ with m = −4 and ℓ = 4
used. We see the emergence of 8 amplification zones.

An exact theoretical explanation has yet to be found. Mathematically, a possible direction
for an explanation for the number of amplification zones could come from considering
the interference patterns between all evolved waves and for which θ ∈ (0, 2π], possibly
quantized by m, ℓ, we get bright fringes.
Looking at the intensity (integrated over all r as:

∫
I(r)rdr) evolution along z in the

decomposition to modes m, we can get the following plots. As expected, we always have
maximal intensity at m = ℓ. When no perturbation is injected, we have a small intensity
in other modes, due to quenches (which are difficult to discern without plotting in log
scale, as their intensity is negligible). When a perturbation is injected, we can see that the
intensity evolves in the modes, partly due to losses, but also because of the amplification.
Some modes gain intensity while others lose in intensity at high times.
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Figure 14: Log-scaled integrated intensity evolution in effective time for an input vortex of charge ℓ = 4.
Other perturbation modes can also be distinguished due to quenching. We crop to 40 m modes. z is in
cm.

Figure 15: Integrated intensity (Left) and Log-scaled integrated intensity (Right) evolution in effective
time for an input vortex of charge ℓ = 4 with a perturbation in mode m = 2. Other perturbation modes
can also be distinguished possibly due to quenching and amplification. We crop to 40 m modes. z is in
cm.
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4 Interaction Quenches

Out-of-equilibrium dynamics in quantum fluids of light refers to the behavior when the
system does not settle into a stable state. One such example is when a parameter is
suddenly changed. In paraxial fluids of light using hot atomic vapor cells, the geometry
imposes this condition. Quenches come from the fact that interactions are suddenly
turned on or off at the beginning or end of the cell. In this Section, we will study quenches
closely. After modeling them, we will provide a possible observable that could characterize
perturbations due to quenches. From one side, quenching is an important, well studied
out-of-equilibrium phenomenon [21, 22, 23]. From the other side, it is interesting to try
to eliminate it, in order to study vortex dynamics (and other) in equilibrium.

4.1 Origin of Quenching

In order to eliminate quenches, we first have to understand where do they come from and
how can we model them. We will follow similar derivation steps as done in Ref. [8] and
Murad Abuzarli’s PhD thesis in Ref. [24].
In quantum fluids of light, unlike in Bose gases, photons effectively interact through
their coupling with matter. Outside the cell, interactions are null. At the entrance of
the cell, the system is directly driven out of equilibrium through the sudden change
in interactions. The last term of the NLSE 10 reflects these interactions. To better
understand this, suppose that for the input, we have a state centered at zero momentum.
Nonlinear interactions could parametrically induce pairs of Bogoliubov excitations at −k⊥
and k⊥. At the end of the cell, after these excitations interfere, we pass again to a linear
medium and the Bogoliubov excitations are transformed back to photons. In a more
general sense, if the input is not an eigenmode of the system, the interaction quenches
will yield the creation of Bogoliubov excitations. If we input a vortex field for example,
we saw that perturbations with a characteristic ring-like pattern form (see Fig. 10). This
phenomenon can be visualized as represented in Fig. 16.

Figure 16: The creation of Bogoliubov excitations and their transformation back to photons is represented
along the cell. The interactions sharply increase at the entrance of the cell and decrease at the end. Along
the cell, absorption yields an exponential decay of these interactions. The curve on the right represents
a possible initial state centered at zero momentum (blue) and final state (orange) with a characteristic
distribution of thermal states. Image adapted from [8].
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We already established in Section 2 that outside the medium, photon modes studied in

k-space evolve, with dispersion relation κ(k⊥) =
k2
⊥

2k0
as:

∂âk⊥

∂z
= i

k2
⊥

2k0
(k⊥, z)âk⊥ ,

∂â†−k⊥

∂z
= −i k

2
⊥

2k0
(k⊥, z)â

†
−k⊥

.

(38)

Within the medium, perturbations (due to quenches for example) evolve as:

∂b̂k⊥

∂z
= iΩB(k⊥, z)b̂k⊥ ,

∂b̂†−k⊥

∂z
= −iΩ∗

B(k⊥, z)b̂
†
−k⊥

.

(39)

We also recall that the relation between a photon mode and a Bogoliubov mode is trans-
lated through the transformation:(

âk⊥(z)

â†−k⊥
(z)

)
=

(
uk⊥(z) vk⊥(z)
vk⊥(z) uk⊥(z)

)(
b̂k⊥(z)

b̂†−k⊥
(z)

)
. (40)

These evolution equations tells us that along z, the Bogoliubov excitations will pick up a
phase that we denote by θ(k⊥, z) =

∫ z

0
ΩB(k⊥, z

′)dz′. We will show that the Bogoliubov
excitations possess correlations between the opposite momentum modes as they are pro-
duced simultaneously. The perturbations they can create can be studied rigorously using
the static structure factor which translates the power of density fluctuations. It is also
defined as the Fourier transform of the second order correlation function. If we use the
hydrodynamic formulation in a second quantization language, considering a total number
of particles N0, the static structure factor is defined as:

Sk⊥(z) =
1

N0

〈
δρ̂2k⊥

(z)− | ⟨δρ̂k⊥(z)⟩ |2
〉
, (41)

where the density fluctuation operator is δρ̂k⊥(z) =
∫
dqâ†k⊥+qâk⊥ . Supposing the fluctu-

ations are zero-mean, we get [25]:

Sk⊥(z) =
1

N0

⟨δρ̂k⊥(z)δρ̂−k⊥(z)⟩

=
1

N0

∫
dqdq′

〈
â†q−k⊥

(z)âq(z)â
†
q′+k⊥

(z)âq′(z)
〉
.

(42)

Looking closely at this expression, one could understand the structure factor as an ob-
servable that could measure, by summing over all possible momenta, how many events
transforming a mode from q, q′ to q− k⊥, q

′ + k⊥, while preserving conservation of
momentum (in a nonlinear optics language, phase matching condition) happen. These
events will thus reflect in some way how many photons and Bogoliubov modes are created
and destroyed. We consider that for initial conditions, we have a coherent plane wave at
zero momentum. If an initial condensate state is assumed to be at zero momentum, any
scattering event that creates excitations necessarily at −k⊥ and k⊥ must be drawn from
q = 0 or q′ = 0. All the other contributions to the integral are null. This leaves us with:

Sk⊥(z) =
〈
â†k⊥

(z)âk⊥(z)
〉
+
〈
âk⊥(z)â

†
k⊥
(z)
〉
+⟨â−k⊥(z)âk⊥(z)⟩+

〈
â†k⊥

(z)â†−k⊥
(z)
〉
. (43)
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Using standard commutation relations for creation and annihilation operators, and defin-

ing photonic populations by Nk⊥(z) =
〈
â†k⊥

(z)âk⊥(z)
〉

and photonic correlations by

Ck⊥(z) = ⟨â−k⊥(z)âk⊥(z)⟩, we get:

Sk⊥(z) = 1 + 2Nk⊥(z) + 2Re (Ck⊥(z)) . (44)

We consider first for simplicity that the population is fixed to N0 inside the cell (outside
the cell it is zero as no Bogoliubov excitations exist yet). This means that before the
cell, Sk⊥(z < 0) = 1. At bigger effective times, we will start seeing oscillations around
1 as the modes will pick up a phase θ(z) making the last term proportional to cos(θ(z))
while the second term stays constant; Sk⊥(z > 0) = 1+2N0+2C0cos(θ(z)). This is what
makes the static structure factor a good observable to look at when considering quenches.

To study more exactly how will we get creation of pairs of Bogoliubov excitations starting
with a vacuum state let us follow the reasoning below.
The assumptions that we made for the initial state at entrance of the cell (z = 0) read
as:

Nk⊥(0) =
〈
â†k⊥

(0)âk⊥(0)
〉
= N0δ(k⊥)

Ck⊥(0) = ⟨â−k⊥(0)âk⊥(0)⟩ = δ(k⊥),
(45)

with vacuum in all k⊥ ̸= 0. We will now focus on these non-zero momentum modes as
they are modes with the possibility to be excited due to quantum fluctuations. If we try
to write the correlations and populations using the basis transformation, we will see that
it is possible to have a non-zero population in a k⊥ ̸= 0 mode as soon as we are inside
the cell:〈
â†k⊥

(0+)âk⊥(0
+)
〉
= uk⊥(0

+)vk⊥(0
+)
〈
b̂−k⊥(0

+)b̂k⊥(0
+)
〉
+ v2k⊥

(0+)
〈
b̂−k⊥(0

+)b̂†−k⊥
(0+)

〉
+

u2k⊥
(0+)

〈
b̂†k⊥

(0+)b̂k⊥(0
+)
〉
+ uk⊥vk⊥

〈
b̂†k⊥

(0+)b̂†−k⊥
(0+)

〉
⟨â−k⊥(0

+)âk⊥(0
+)⟩ = u2k⊥

(0+)
〈
b̂−k⊥(0

+)b̂k⊥(0)
〉
+ uk⊥(0

+)vk⊥(0
+)
〈
b̂−k⊥(0

+)b̂†−k⊥
(0+)

〉
+

uk⊥(0
+)vk⊥(0

+)
〈
b̂†k⊥

(0+)b̂k⊥(0
+)
〉
+ v2k⊥

(0+)
〈
b̂†k⊥

(0+)b̂†−k⊥
(0+)

〉
.

(46)
This further simplifies to:〈

b̂−k⊥(0
+)b̂k⊥(0

+)
〉
=
〈
b̂†k⊥

(0+)b̂†−k⊥
(0+)

〉
= −uk⊥(0

+)vk⊥(0
+)〈

b̂−k⊥(0
+)b̂†−k⊥

(0+)
〉
= u2k⊥

(0+)〈
b̂†k⊥

(0+)b̂k⊥(0
+)
〉
= v2k⊥

(0+).

(47)

In fact, if we pause and think about Eq. 47, we can already see that it is enough to
have vk⊥(0

+) ̸= 0 to get a non zero number of Bogoliubov excitations (quasi-particles)
in k⊥. In fact, this is true as long as we are in a medium with non-zero interactions.
Rigorously, we can show, by solving system 29, that this is true as, for a dispersion

ΩB(k⊥) = ±
√

k⊥
2

2k0

(
k⊥

2

2k0
+ 2ḡ|E0|2

)
− iα

2
:

uk⊥(z), vk⊥(z) =
1

2

[
(
2ΩBm̄

ℏk⊥
2 )1/2 ± (

ℏk⊥
2

2ΩBm̄
)1/2
]
. (48)
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In a similar fashion, we can continue the analysis up to the end of the cell (z = L). From
Eq. 39, we get considering losses:〈

b̂−k⊥(L)b̂k⊥(L)
〉
=
〈
b̂†k⊥

(L)b̂†−k⊥
(L)
〉
= −uk⊥(L)vk⊥(L)e

2iθ(L)〈
b̂−k⊥(L)b̂

†
−k⊥

(L)
〉
= u2k⊥

(L)e−αL〈
b̂†k⊥

(L)b̂k⊥(L)
〉
= v2k⊥

(L)e−αL.

(49)

If we transform back to the photonic basis, we get:〈
â†k⊥

(L)âk⊥(L)
〉
= −uk⊥(0

+)vk⊥(0
+)uk⊥(L)vk⊥(L)

[
e−2iθ(L) + e2iθ(L)

]
+

v2k⊥
(L)u2k⊥

(0+) + v2k⊥
(0+)u2k⊥

(L)

⟨â−k⊥(L)âk⊥(L)⟩ = −uk⊥(0
+)vk⊥(0

+)uk⊥(L)vk⊥(L)
[
u2k⊥

(L)e−2iθ(L) + v2k⊥
(L)e2iθ(L)

]
+

uk⊥(L)vk⊥(L)
[
u2k⊥

(0+) + v2k⊥
(0+)

]
.

(50)
And for a step δ after the cell, we finally get a conserved photonic population and de-
phased correlations:〈

â†k⊥
(L+ δ)âk⊥(L+ δ)

〉
=
〈
â†k⊥

(L)âk⊥(L)
〉

⟨â−k⊥(L+ δ)âk⊥(L+ δ)⟩ = e−2iκδ⟨â−k⊥(L)âk⊥(L)⟩.
(51)

As expected, at the end of the cell, we get complex populations and correlations coming
from the different excitations that interfered along the cell.

4.2 Numerical Tool: A Possible Observable for Perturbations

We saw that to study quenches rigorously, we should look at the static structure factor
observable or at the second order correlation function g(2). In this subsection, we also offer
a fast numerical way to check roughly the perturbations coming from quenches. Suppose
first that for the input field we inject a vortex ψv on top of the background ψ0. Any
perturbation created in the cell can possibly create oscillations in the intensity. Since we
know that quenches create radially symmetric oscillations, we will consider for observable
the density, on top of that of the background as a function of r, which we can measure
numerically as:

√
I(r)−

√
I0(r) (after performing an azimuthal average over a specified

region of the array). We note that numerically, we will not consider the quench at the
end of the cell as we are imaging directly in the planes of interest. Hence, the more we
proceed in effective time, the more the perturbations due to quench will dissipate until
eventually disappearing.8 This effect is depicted in Fig. 17. PhD student Myrann B.
Rasooli checked that as theorized by Bogoliubov Theory, these perturbations travel in z
at the speed of sound.

8This is true if we include or not losses in the simulations.
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(a) (b)

(c)

Figure 17: Intensity and phase (background is subtracted) for input vortex of charge ℓ = 3 at z = 5cm
(a) and z = 20cm (b). The perturbations due to quench dissipate along the cell. (c) Radial profile√
I(r)−

√
I0(r) showing perturbations attenuated at high effective time.

4.3 Numerical Post-Processing

In principle, if one wants to exclude the effects of quenches from the data analysis, we
could think about ways either to eliminate it since the entrance of the cell, or by using
image analysis techniques. In this Subsection, we will explain the latter. To do this, we
will first suppose that for the same input vortex, the consequent perturbations happen
in the same way all the time. We also assume that the vortex field doesn’t change a lot
along the cell. We consider every perturbation on top of the vortex and the background
to come from quenching. Hence, if we first run a simulation for an input of only a vortex
on top of the background, we can retrieve the perturbations, by taking the difference
with the ideal case being the vortex and background only. For each fixed z, we hence
save ∆E = E − Eideal = E − E0 × ψv.
The last step would then only be to subtract the saved perturbations ∆E (which is an
array) from the NLSE-simulated array at each step. This can also be done for simulations
with different inputs. If the input has an extra plane wave, we also include it in the ideal
field, etc. To be more explicit, if we take for example Fig. 10, we track the perturbations
from (a) and try to remove them when simulating (b). In Fig. 18, we run a simulation
when the quenching effect is removed using this technique. It shows clearly that the
ring-like perturbations don’t exist anymore using such a method.
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Figure 18: Simulation after removing the quenching effect at z = 10cm. The ring-like pattern disappears.
After tracking the perturbations and saving them in an initial simulation, we remove them from the
images in the new run. The radial profile is also shown on the right: no perturbations are present.

This method is limited. It is a post-processing method that eliminates quenches from
the analysis. Their effects in the intrinsic simulations are nevertheless always present.
We just remove extra perturbations by comparing to the ideal case and this doesn’t
eliminate the quenching effect on vortex dynamics. It can be seen as a method to remove
the quenches from the images and plots (which still affects intensity and phase readings)
but not from the intrinsic dynamics.

4.4 Antiquenching

The method explained in Subsection 4.3 above has obvious limits. From an experimental
point of view, it is impossible to get the same conditions at the same z every time, making
it difficult to use this method to calibrate by the perturbations. We thus need to explore
options that are more experimentally feasible. In this Subsection, we will study two of
them. While the first one is also not very easy to realize, the second one might be the
most promising for a paraxial fluids of light system. The results shown in this Subsection
are still preliminary and further effort can be put in that regard.

4.4.1 Numerical Tool: Ramping Interactions Adiabatically

We saw that quenches in our system come from the fact that interactions are suddenly
turned on and off at the cell boundaries. In simulations, we could possible overturn this
by trying to adiabatically change the non-linearity (that we control by n2) along z. In
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simulations, this can be easily achieved using a callback function that internally changes
the value associated to n2 after each simulation step. We define any function that we
want while making sure that n2(0) = 0.
In a first trial (see Fig. 19), we could see that different rampings for n2(z) could possibly
affect the perturbations in the radial profile.
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Figure 19: Radial profiles for different ramps with fixed n2(0) = 0m2/W and n2(z = 210mm) =
−10−9m2/W . The perturbations seem to soften and dissipate faster for the last few ramps, however,
this only comes from the fact that the overall experienced interactions are lower. I and Ibackround are
normalized before taking the difference of square roots. A vortex of charge ℓ = 1 and ξ = 10−5m is used.
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However, the correct interpretation in that specific case is not that the adiabatic changes
are leading to lower perturbations. The effect only comes from the fact that we are
going from high to low overall interactions. In other terms the integral under the curve
of n2 is not fixed in Fig. 19. To rigorously study the effect, we thus have to choose
parametrizations for the ramp 9 that conserve the integral under the curve as done in
Fig. 20. Even using this method, quenches were not eliminated. Trying to ramp only
between z = 0 and z = z′ < L, then keeping the interactions constant didn’t eliminate
the quench too. Ideally, we would like to find a ramp that reduces the quenching effect
for all z while keeping the highest non-linearity possible in a low-losses regime.

4.4.2 Injection of Antiquenches with a Vortex

One might think that a good strategy would be to get the perturbations (defined as any
contribution to the electric field on top of the input) very close to z = 0 and then, add
the π phase-shifted corresponding field to the input, in the hope that they will directly
interfere destructively and disappear. However, this strategy isn’t optimal in our system
as we are dealing with a nonlinear medium where the superposition principle doesn’t
apply. It has been tried for different vortex sizes and different simulation parameters
without a lot of improvement. A better strategy would thus be to study the perturbations
in the Bogoliubov transformed basis, using Eq. 40 as well as 48 before injecting them.
Such a strategy would be based on looking into the Bogoliubov modes early inside the
cell, in a first simulation and then transforming them to photonic modes that are injected
as antiquenches by adding them to the vortex field in another simulation.

9The functions used can be found on the github.
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Figure 20: Radial profiles for different ramps with fixed n2(0) = 0m2/W and n2(z = 210mm) =
−10−9m2/W with fixed integral under the curve. The perturbations in that case follow almost the same
pattern for all ramps. In no case quenches were fully eliminated. I and I0 are normalized before taking
the difference of square roots. A vortex of charge ℓ = 1 and ξ = 17× 10−6m is used.
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5 Conclusion and Future Work

Throughout this thesis, we explored how paraxial fluids of light provide a great platform
to test ultracold physics phenomena with a simple, highly-controllable setup. The map-
ping between the NLSE and the GPE is the basis for bridging the gap between non-linear
optics and many body physics.

We have seen how spontaneous and stimulated vortex dynamics could occur in such sys-
tems. Waves scattering off a vortex can amplify, multi-charged vortices can split, etc.
Theoretical as well as practical effort can still be made in that regard in order to better
understand how energy dissipates, the role of quantum fluctuations in these dynamics,
and their accurate inclusion in simulations.

The geometry of paraxial fluids of light imposes for now the study of effects out of
equilibrium, due to interaction quenches at the start and end of the cell. We have
strategies to remove them from the analysis but effort can still be made to study dynamics
in a regime at equilibrium by antiquenching.
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Appendix

A Superradiance

Superradiance is a phenomenon common to many fields of physics. We study it in the
context of waves scattering off a vortex. It has been observed in water bathtub exper-
iments [26] as well as in quantum fluids of light [27]. A lot of the existing literature
uses analog gravity language to describe it (superradiance can be seen from the point
of view of a stimulated Hawking effect). In this Appendix, we will provide an analysis
comparable to that of the existing literature. We can also use this to test the tools we
developed. However, by essence, the explanation is the same as the amplification process
explained in Section 3.

A.1 Theoretical Background

As explained in Ref. [26], a wave ζ (e.g. a plane wave) can be decomposed into partial
waves as:

ζ(t̄, r, θ) = Re

[∑
m∈Z

∫ ∞

0

φf̄ ,m(r)
e−2iπf̄ t̄+imθ

√
r

df̄

]
= Re

[∑
m∈Z

∫ ∞

0

Φk0,m(r)
e−ik0z+imθ

√
r

dk0

]
.

(52)
We also define, for each partial wave, an effective frequency ω̄ = 2πf̄ . In the fluid’s
reference frame rotating at Ω(r) = vθ

r
= ℏℓ

m̄r2
(this holds true if vr ≪ vθ, otherwise, this

expression is more complex), ω̄ is perceived, due to the Doppler effect as 10

ωfluid(r) = ω̄ −mΩ(r) = ω̄ − kθ(r).v(r), (53)

where kθ =
m
r
.11 It can be shown that to have superradiance, for some region we need to

have negative perceived frequencies yielding the condition

ω̄ < mΩ. (54)

When such negative frequency partial waves interact with the vortex inside what we call
the ergoregion, due to conservation of energy, an amplification of energy should be ob-
served for the reflected waves scattering off the vortex. We think that this interaction
could induce the splitting of vortices, for energy to be conserved. In simple terms, the
vortex ”wins negative energy”, while the waves are ”losing negative energy”.

If we define m′ := m− l, it can be shown that the superradiance condition is equivalent to
having the intensity in the −m′ mode higher than the intensity in the m′ mode [27], [28].
Looking at Fig. 6, this means that if we fix a region in r and look at columns symmetric
with respect to l, we should see a brighter intensity on the left than on the right.

10This can be trivially seen since θfluid = θ−Ωt̄, e−iω̄t̄+imθ = e−iω̄t̄+im(θfluid+Ωt̄) = e−i(ω̄−mΩ)t̄+imθfluid

11The azimuthal wave number m is not to be confused with effective mass m̄.
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A.2 Numerical Tool: Ergoregion Calculation

In order to make a full analysis, when we look at superradiance, we should be able to find
the ergoregion around a vortex.12 In quantum fluids of light, the ergoregion is defined
by the critical radius re at which v(r) = cs(r)

13. Usually, the tangential flow vθ is the
most significant part of the velocity so we write v(r) ≈ vθ(r). This condition means that
for radii where vθ(r) < cs, waves can travel against the flow. When vθ(r) > cs, the flow
speed overtakes the wave speed, and the region becomes an ergoregion. This means that
within the ergoregion, any excitation is dragged along by the fluid.

We recall that cs(r) = c
√
n2I(r). Within the NLSE solver 2.2, a code for finding the

radial and tangential velocity components was also developed. Using numpy.where or
cupy.where, it then becomes numerically easy to find the crossings between speed of
sound and tangential velocity. Sometimes, numerically, we get a function for vθ that
increases rapidly for small r and then decreases, yielding 2 intersection points (which are
usually approximately equal), we take by default the biggest. For multi-charge vortices,
we consider one effective ergoregion also by taking the biggest intersection point.

After finding the ergoregion re, we can then plot the difference in intensities between
the m′ and −m′ modes that we define respectively by u2m′ and v2m′ as a function of r.
If we send a plane wave perturbation, we get for different plane wave frequencies k, ℓ
and z the characteristic superradiance plot as in Fig. 21. Quenching might affect the
analysis. However, we can see the signature where inside the ergoregion, the intensity in
the negative modes, trapped near the vortex, is higher than the positive ones.

Figure 21: Difference between intensities u2m′ (in m′ mode) and v2m′ (in −m′ mode) as a function of r.
We represent by a dashed line the ergoregion re. Within this ergoregion, we have a higher intensity in
negative modes. The ergoregion is at re = 10p ≈ 10−4m = 0.1mm, with p pixel size. We use a plane
wave perturbation with k = 16110.73m−1, ℓ = 2, and look at z = 8cm.

12The name is similar to the one used in black hole physics where the ergoregion of a rotating black
hole is where no static observers can remain at rest because the spacetime is dragged by the rotation.

13We will consider azimuthal averages over θ.
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[23] Pierre-Élie Larré and Iacopo Carusotto. “Optomechanical signature of a frictionless
flow of superfluid light”. In: Phys. Rev. A 91 (5 May 2015), p. 053809. doi: 10.
1103/PhysRevA.91.053809.

[24] Murad Abuzarli. “Out of equilibrium dynamics in a paraxial fluid of light”. 2022SORUS161.
PhD thesis. 2022. url: http://www.theses.fr/2022SORUS161/document.

[25] V. I. Yukalov. “Structure factor of bose-condensed systems”. In: Journal of Physical
Studies 11.1 (2007), pp. 55–62. doi: https://doi.org/10.30970/jps.11.055.

[26] Theo Torres et al. “Rotational superradiant scattering in a vortex flow”. In: Nature
Physics 13.9 (Sept. 2017), pp. 833–836. doi: 10.1038/nphys4151.

[27] Maria Braidotti et al.Measurement of Penrose superradiance in a photon superfluid.
Sept. 2021. doi: 10.48550/arXiv.2109.02307.

[28] Angus Prain et al. “Superradiant scattering in fluids of light”. In: Physical Review
D 100.2 (July 2019). issn: 2470-0029. doi: 10.1103/physrevd.100.024037.

34

https://arxiv.org/abs/2501.08383
https://doi.org/10.1126/science.1060182
https://www.science.org/doi/pdf/10.1126/science.1060182
https://doi.org/10.1103/PhysRevA.108.063512
https://doi.org/10.1103/PhysRevA.108.063512
https://doi.org/10.1088/0953-4075/35/17/301
http://dx.doi.org/10.1088/0953-4075/35/17/301
http://dx.doi.org/10.1088/0953-4075/35/17/301
https://doi.org/10.1140/epjd/e2016-60590-2
https://doi.org/10.1103/physreva.92.043802
https://doi.org/10.1103/physreva.92.043802
https://doi.org/10.1103/PhysRevA.91.053809
https://doi.org/10.1103/PhysRevA.91.053809
http://www.theses.fr/2022SORUS161/document
https://doi.org/https://doi.org/10.30970/jps.11.055
https://doi.org/10.1038/nphys4151
https://doi.org/10.48550/arXiv.2109.02307
https://doi.org/10.1103/physrevd.100.024037

	Introduction
	Quantum Fluids of Light
	Light Propagation in a Non-linear Medium
	Numerical analysis using a NLSE Solver
	Numerical Tool: Absorbing Boundary Conditions

	Hydrodynamic Formulation
	Bogoliubov Theory

	Vortices
	Definition and Properties
	Numerical Tool: Decomposition into Bogoliubov Modes in Spherical Coordinates
	Stimulated and Spontaneous Dynamics

	Interaction Quenches
	Origin of Quenching
	Numerical Tool: A Possible Observable for Perturbations
	Numerical Post-Processing
	Antiquenching
	Numerical Tool: Ramping Interactions Adiabatically
	Injection of Antiquenches with a Vortex


	Conclusion and Future Work
	Superradiance
	Theoretical Background
	Numerical Tool: Ergoregion Calculation


